Cargando…
Predictive Modeling of Outcomes After Traumatic and Nontraumatic Spinal Cord Injury Using Machine Learning: Review of Current Progress and Future Directions
Machine learning represents a promising frontier in epidemiological research on spine surgery. It consists of a series of algorithms that determines relationships between data. Machine learning maintains numerous advantages over conventional regression techniques, such as a reduced requirement for a...
Autores principales: | Khan, Omar, Badhiwala, Jetan H., Wilson, Jamie R.F., Jiang, Fan, Martin, Allan R., Fehlings, Michael G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Spinal Neurosurgery Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945005/ https://www.ncbi.nlm.nih.gov/pubmed/31905456 http://dx.doi.org/10.14245/ns.1938390.195 |
Ejemplares similares
-
Degenerative Cervical Myelopathy; A Review of the Latest Advances and Future Directions in Management
por: Wilson, Jamie R.F., et al.
Publicado: (2019) -
“Time is spine”: the importance of early intervention for traumatic spinal cord injury
por: Ahuja, Christopher S., et al.
Publicado: (2020) -
Early Surgery for Traumatic Spinal Cord Injury: Where Are We Now?
por: Wilson, Jefferson R., et al.
Publicado: (2020) -
Prediction of independence in bowel function after spinal cord injury: validation of a logistic regression model
por: Khan, Omar, et al.
Publicado: (2020) -
A deep learning model for detection of cervical spinal cord compression in MRI scans
por: Merali, Zamir, et al.
Publicado: (2021)