Cargando…

Identification of kit-ligand a as the Gene Responsible for the Medaka Pigment Cell Mutant few melanophore

The body coloration of animals is due to pigment cells derived from neural crest cells, which are multipotent and differentiate into diverse cell types. Medaka (Oryzias latipes) possesses four distinct types of pigment cells known as melanophores, xanthophores, iridophores, and leucophores. The few...

Descripción completa

Detalles Bibliográficos
Autores principales: Otsuki, Yuji, Okuda, Yuki, Naruse, Kiyoshi, Saya, Hideyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945022/
https://www.ncbi.nlm.nih.gov/pubmed/31757930
http://dx.doi.org/10.1534/g3.119.400561
Descripción
Sumario:The body coloration of animals is due to pigment cells derived from neural crest cells, which are multipotent and differentiate into diverse cell types. Medaka (Oryzias latipes) possesses four distinct types of pigment cells known as melanophores, xanthophores, iridophores, and leucophores. The few melanophore (fm) mutant of medaka is characterized by reduced numbers of melanophores and leucophores. We here identify kit-ligand a (kitlga) as the gene whose mutation gives rise to the fm phenotype. This identification was confirmed by generation of kitlga knockout medaka and the findings that these fish also manifest reduced numbers of melanophores and leucophores and fail to rescue the fm mutant phenotype. We also found that expression of sox5, pax7a, pax3a, and mitfa genes is down-regulated in both fm and kitlga knockout medaka, implicating c-Kit signaling in regulation of the expression of these genes as well as the encoded transcription factors in pigment cell specification. Our results may provide insight into the pathogenesis of c-Kit–related pigmentation disorders such as piebaldism in humans, and our kitlga knockout medaka may prove useful as a tool for drug screening.