Cargando…
A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms
BACKGROUND: In classification and diagnostic testing, the receiver-operator characteristic (ROC) plot and the area under the ROC curve (AUC) describe how an adjustable threshold causes changes in two types of error: false positives and false negatives. Only part of the ROC curve and AUC are informat...
Autores principales: | Carrington, André M., Fieguth, Paul W., Qazi, Hammad, Holzinger, Andreas, Chen, Helen H., Mayr, Franz, Manuel, Douglas G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945414/ https://www.ncbi.nlm.nih.gov/pubmed/31906931 http://dx.doi.org/10.1186/s12911-019-1014-6 |
Ejemplares similares
-
Partial AUC maximization for essential gene prediction using genetic algorithms
por: Hwang, Kyu-Baek, et al.
Publicado: (2013) -
The Open AUC Project
por: Cölfen, Helmut, et al.
Publicado: (2009) -
Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules
por: Edwards, Garrett B., et al.
Publicado: (2020) -
Correcting AUC for Measurement Error
por: Rosner, Bernard, et al.
Publicado: (2015) -
Imbalanced learning: foundations, algorithms, and applications
por: He, Haibo, et al.
Publicado: (2013)