Cargando…
Novel prognostication of patients with spinal and pelvic chondrosarcoma using deep survival neural networks
BACKGROUND: We used the Surveillance, Epidemiology, and End Results (SEER) database to develop and validate deep survival neural network machine learning (ML) algorithms to predict survival following a spino-pelvic chondrosarcoma diagnosis. METHODS: The SEER 18 registries were used to apply the Risk...
Autores principales: | Ryu, Sung Mo, Seo, Sung Wook, Lee, Sun-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945432/ https://www.ncbi.nlm.nih.gov/pubmed/31907039 http://dx.doi.org/10.1186/s12911-019-1008-4 |
Ejemplares similares
-
Prognostic nomograms to predict overall survival and cancer‐specific survival in patients with pelvic chondrosarcoma
por: Chen, Li, et al.
Publicado: (2019) -
Survival and prognostic factors in conventional central chondrosarcoma
por: Fromm, Julian, et al.
Publicado: (2018) -
Survival and prognostic factors in conventional G1 chondrosarcoma
por: Fromm, Julian, et al.
Publicado: (2019) -
Extraskeletal Mesenchymal Chondrosarcoma in the Axillary Region: Reports of Two Cases
por: Seo, Chang-Young, et al.
Publicado: (2012) -
Clinical Statistical Analysis with Comparison between Pelvic and Non-pelvic Chondrosarcoma
por: Jami, Sayed Abdulla, et al.
Publicado: (2021)