Cargando…
Gait kinematics of the hip, pelvis, and trunk associated with external hip adduction moment in patients with secondary hip osteoarthritis: toward determination of the key point in gait modification
BACKGROUND: A larger daily cumulative hip loading, which is the product of the external hip adduction moment (HAM) impulse during gait and the number of steps per day has been identified as a factor associated with the progression of secondary hip osteoarthritis (OA). The cause of the increased HAM...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945754/ https://www.ncbi.nlm.nih.gov/pubmed/31906926 http://dx.doi.org/10.1186/s12891-019-3022-1 |
Sumario: | BACKGROUND: A larger daily cumulative hip loading, which is the product of the external hip adduction moment (HAM) impulse during gait and the number of steps per day has been identified as a factor associated with the progression of secondary hip osteoarthritis (OA). The cause of the increased HAM impulse in patients with hip OA has not been identified. The purpose of this study was to identify the gait parameters associated with HAM impulse during gait in patients with secondary hip OA. METHODS: Fifty-five patients (age 22–65 years) with mild-to-moderate secondary hip OA participated in this cross-sectional study. The HAM impulse during gait was measured using a three-dimensional gait analysis system. To identify the gait parameters associated with HAM impulse, hierarchical multiple regression analysis was performed. The first model (basic model) included body weight and stance phase duration. The second models included gait parameters (gait speed; ground reaction force [GRF] in frontal plane; and hip, pelvic, and trunk angle in frontal plane) and hip pain in addition to the basic model. RESULTS: Body weight and stance phase duration explained 61% of the variance in HAM impulse. In the second model, which took into account body weight and stance phase duration, hip adduction angle (9.4%), pelvic tilt (6.5%), and trunk lean (3.2%) in addition to GRF explained the variance in the HAM impulse. Whereas larger hip adduction angle and pelvic tilt toward the swing limb were associated with a larger HAM impulse, larger trunk lean toward the stance limb was associated with smaller HAM impulse. CONCLUSION: In patients with excessive hip adduction and pelvic tilt toward the swing limb during gait, gait modification may contribute to the reduction of hip joint loading. |
---|