Cargando…
A network analysis revealed the essential and common downstream proteins related to inguinal hernia
Although more than 1 in 4 men develop symptomatic inguinal hernia during their lifetime, the molecular mechanism behind inguinal hernia remains unknown. Here, we explored the protein-protein interaction network built on known inguinal hernia-causative genes to identify essential and common downstrea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946160/ https://www.ncbi.nlm.nih.gov/pubmed/31910207 http://dx.doi.org/10.1371/journal.pone.0226885 |
Sumario: | Although more than 1 in 4 men develop symptomatic inguinal hernia during their lifetime, the molecular mechanism behind inguinal hernia remains unknown. Here, we explored the protein-protein interaction network built on known inguinal hernia-causative genes to identify essential and common downstream proteins for inguinal hernia formation. We discovered that PIK3R1, PTPN11, TGFBR1, CDC42, SOS1, and KRAS were the most essential inguinal hernia-causative proteins and UBC, GRB2, CTNNB1, HSP90AA1, CBL, PLCG1, and CRK were listed as the most commonly-involved downstream proteins. In addition, the transmembrane receptor protein tyrosine kinase signaling pathway was the most frequently found inguinal hernia-related pathway. Our in silico approach was able to uncover a novel molecular mechanism underlying inguinal hernia formation by identifying inguinal hernia-related essential proteins and potential common downstream proteins of inguinal hernia-causative proteins. |
---|