Cargando…
Building segmentation through a gated graph convolutional neural network with deep structured feature embedding
Automatic building extraction from optical imagery remains a challenge due to, for example, the complexity of building shapes. Semantic segmentation is an efficient approach for this task. The latest development in deep convolutional neural networks (DCNNs) has made accurate pixel-level classificati...
Autores principales: | Shi, Yilei, Li, Qingyu, Zhu, Xiao Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946440/ https://www.ncbi.nlm.nih.gov/pubmed/31929682 http://dx.doi.org/10.1016/j.isprsjprs.2019.11.004 |
Ejemplares similares
-
Co-embedding of edges and nodes with deep graph convolutional neural networks
por: Zhou, Yuchen, et al.
Publicado: (2023) -
CGNet: A graph-knowledge embedded convolutional neural network for detection of pneumonia
por: Yu, Xiang, et al.
Publicado: (2021) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020)