Cargando…

A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling

Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Chaowei, Gordon, Kyle N., Liu, Pengfei, Liu, Jinyu, Zhou, Xiaoqing, Hao, Peipei, Narayan, Dushyant, Emmanouilidou, Eve, Sun, Hongyi, Liu, Yuntian, Brawer, Harlan, Ramirez, Arthur P., Ding, Lei, Cao, Huibo, Liu, Qihang, Dessau, Dan, Ni, Ni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946652/
https://www.ncbi.nlm.nih.gov/pubmed/31911588
http://dx.doi.org/10.1038/s41467-019-13814-x
_version_ 1783485406137810944
author Hu, Chaowei
Gordon, Kyle N.
Liu, Pengfei
Liu, Jinyu
Zhou, Xiaoqing
Hao, Peipei
Narayan, Dushyant
Emmanouilidou, Eve
Sun, Hongyi
Liu, Yuntian
Brawer, Harlan
Ramirez, Arthur P.
Ding, Lei
Cao, Huibo
Liu, Qihang
Dessau, Dan
Ni, Ni
author_facet Hu, Chaowei
Gordon, Kyle N.
Liu, Pengfei
Liu, Jinyu
Zhou, Xiaoqing
Hao, Peipei
Narayan, Dushyant
Emmanouilidou, Eve
Sun, Hongyi
Liu, Yuntian
Brawer, Harlan
Ramirez, Arthur P.
Ding, Lei
Cao, Huibo
Liu, Qihang
Dessau, Dan
Ni, Ni
author_sort Hu, Chaowei
collection PubMed
description Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi(4)Te(7) with alternating septuple [MnBi(2)Te(4)] and quintuple [Bi(2)Te(3)] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi(4)Te(7) is a Z(2) antiferromagnetic TI with two types of surface states associated with the [MnBi(2)Te(4)] or [Bi(2)Te(3)] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi(2)Te(4)] and [Bi(2)Te(3)] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi(4)Te(7) make it an ideal system to investigate rich emergent phenomena.
format Online
Article
Text
id pubmed-6946652
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69466522020-01-09 A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling Hu, Chaowei Gordon, Kyle N. Liu, Pengfei Liu, Jinyu Zhou, Xiaoqing Hao, Peipei Narayan, Dushyant Emmanouilidou, Eve Sun, Hongyi Liu, Yuntian Brawer, Harlan Ramirez, Arthur P. Ding, Lei Cao, Huibo Liu, Qihang Dessau, Dan Ni, Ni Nat Commun Article Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi(4)Te(7) with alternating septuple [MnBi(2)Te(4)] and quintuple [Bi(2)Te(3)] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi(4)Te(7) is a Z(2) antiferromagnetic TI with two types of surface states associated with the [MnBi(2)Te(4)] or [Bi(2)Te(3)] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi(2)Te(4)] and [Bi(2)Te(3)] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi(4)Te(7) make it an ideal system to investigate rich emergent phenomena. Nature Publishing Group UK 2020-01-07 /pmc/articles/PMC6946652/ /pubmed/31911588 http://dx.doi.org/10.1038/s41467-019-13814-x Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Hu, Chaowei
Gordon, Kyle N.
Liu, Pengfei
Liu, Jinyu
Zhou, Xiaoqing
Hao, Peipei
Narayan, Dushyant
Emmanouilidou, Eve
Sun, Hongyi
Liu, Yuntian
Brawer, Harlan
Ramirez, Arthur P.
Ding, Lei
Cao, Huibo
Liu, Qihang
Dessau, Dan
Ni, Ni
A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
title A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
title_full A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
title_fullStr A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
title_full_unstemmed A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
title_short A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
title_sort van der waals antiferromagnetic topological insulator with weak interlayer magnetic coupling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946652/
https://www.ncbi.nlm.nih.gov/pubmed/31911588
http://dx.doi.org/10.1038/s41467-019-13814-x
work_keys_str_mv AT huchaowei avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT gordonkylen avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liupengfei avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liujinyu avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT zhouxiaoqing avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT haopeipei avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT narayandushyant avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT emmanouilidoueve avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT sunhongyi avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liuyuntian avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT brawerharlan avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT ramirezarthurp avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT dinglei avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT caohuibo avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liuqihang avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT dessaudan avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT nini avanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT huchaowei vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT gordonkylen vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liupengfei vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liujinyu vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT zhouxiaoqing vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT haopeipei vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT narayandushyant vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT emmanouilidoueve vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT sunhongyi vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liuyuntian vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT brawerharlan vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT ramirezarthurp vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT dinglei vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT caohuibo vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT liuqihang vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT dessaudan vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling
AT nini vanderwaalsantiferromagnetictopologicalinsulatorwithweakinterlayermagneticcoupling