Cargando…
Enabling remote quantum emission in 2D semiconductors via porous metallic networks
Here we report how two-dimensional crystal (2DC) overlayers influence the recrystallization of relatively thick metal films and the subsequent synergetic benefits this provides for coupling surface plasmon-polaritons (SPPs) to photon emission in 2D semiconductors. We show that annealing 2DC/Au films...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946668/ https://www.ncbi.nlm.nih.gov/pubmed/31911592 http://dx.doi.org/10.1038/s41467-019-13857-0 |
_version_ | 1783485409654734848 |
---|---|
author | Fonseca, Jose J. Yeats, Andrew L. Blue, Brandon Zalalutdinov, Maxim K. Brintlinger, Todd Simpkins, Blake S. Ratchford, Daniel C. Culbertson, James C. Grim, Joel Q. Carter, Samuel G. Ishigami, Masa Stroud, Rhonda M. Cress, Cory D. Robinson, Jeremy T. |
author_facet | Fonseca, Jose J. Yeats, Andrew L. Blue, Brandon Zalalutdinov, Maxim K. Brintlinger, Todd Simpkins, Blake S. Ratchford, Daniel C. Culbertson, James C. Grim, Joel Q. Carter, Samuel G. Ishigami, Masa Stroud, Rhonda M. Cress, Cory D. Robinson, Jeremy T. |
author_sort | Fonseca, Jose J. |
collection | PubMed |
description | Here we report how two-dimensional crystal (2DC) overlayers influence the recrystallization of relatively thick metal films and the subsequent synergetic benefits this provides for coupling surface plasmon-polaritons (SPPs) to photon emission in 2D semiconductors. We show that annealing 2DC/Au films on SiO(2) results in a reverse epitaxial process where initially nanocrystalline Au films gain texture, crystallographically orient with the 2D crystal overlayer, and form an oriented porous metallic network (OPEN) structure in which the 2DC can suspend above or coat the inside of the metal pores. Both laser excitation and exciton recombination in the 2DC semiconductor launch propagating SPPs in the OPEN film. Energy in-/out- coupling occurs at metal pore sites, alleviating the need for dielectric spacers between the metal and 2DC layer. At low temperatures, single-photon emitters (SPEs) are present across an OPEN-WSe(2) film, and we demonstrate remote SPP-mediated excitation of SPEs at a distance of 17 μm. |
format | Online Article Text |
id | pubmed-6946668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69466682020-01-09 Enabling remote quantum emission in 2D semiconductors via porous metallic networks Fonseca, Jose J. Yeats, Andrew L. Blue, Brandon Zalalutdinov, Maxim K. Brintlinger, Todd Simpkins, Blake S. Ratchford, Daniel C. Culbertson, James C. Grim, Joel Q. Carter, Samuel G. Ishigami, Masa Stroud, Rhonda M. Cress, Cory D. Robinson, Jeremy T. Nat Commun Article Here we report how two-dimensional crystal (2DC) overlayers influence the recrystallization of relatively thick metal films and the subsequent synergetic benefits this provides for coupling surface plasmon-polaritons (SPPs) to photon emission in 2D semiconductors. We show that annealing 2DC/Au films on SiO(2) results in a reverse epitaxial process where initially nanocrystalline Au films gain texture, crystallographically orient with the 2D crystal overlayer, and form an oriented porous metallic network (OPEN) structure in which the 2DC can suspend above or coat the inside of the metal pores. Both laser excitation and exciton recombination in the 2DC semiconductor launch propagating SPPs in the OPEN film. Energy in-/out- coupling occurs at metal pore sites, alleviating the need for dielectric spacers between the metal and 2DC layer. At low temperatures, single-photon emitters (SPEs) are present across an OPEN-WSe(2) film, and we demonstrate remote SPP-mediated excitation of SPEs at a distance of 17 μm. Nature Publishing Group UK 2020-01-07 /pmc/articles/PMC6946668/ /pubmed/31911592 http://dx.doi.org/10.1038/s41467-019-13857-0 Text en © This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Fonseca, Jose J. Yeats, Andrew L. Blue, Brandon Zalalutdinov, Maxim K. Brintlinger, Todd Simpkins, Blake S. Ratchford, Daniel C. Culbertson, James C. Grim, Joel Q. Carter, Samuel G. Ishigami, Masa Stroud, Rhonda M. Cress, Cory D. Robinson, Jeremy T. Enabling remote quantum emission in 2D semiconductors via porous metallic networks |
title | Enabling remote quantum emission in 2D semiconductors via porous metallic networks |
title_full | Enabling remote quantum emission in 2D semiconductors via porous metallic networks |
title_fullStr | Enabling remote quantum emission in 2D semiconductors via porous metallic networks |
title_full_unstemmed | Enabling remote quantum emission in 2D semiconductors via porous metallic networks |
title_short | Enabling remote quantum emission in 2D semiconductors via porous metallic networks |
title_sort | enabling remote quantum emission in 2d semiconductors via porous metallic networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946668/ https://www.ncbi.nlm.nih.gov/pubmed/31911592 http://dx.doi.org/10.1038/s41467-019-13857-0 |
work_keys_str_mv | AT fonsecajosej enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT yeatsandrewl enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT bluebrandon enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT zalalutdinovmaximk enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT brintlingertodd enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT simpkinsblakes enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT ratchforddanielc enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT culbertsonjamesc enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT grimjoelq enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT cartersamuelg enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT ishigamimasa enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT stroudrhondam enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT cresscoryd enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks AT robinsonjeremyt enablingremotequantumemissionin2dsemiconductorsviaporousmetallicnetworks |