Cargando…
Evaluation of surface EMG-based recognition algorithms for decoding hand movements
Myoelectric pattern recognition (MPR) to decode limb movements is an important advancement regarding the control of powered prostheses. However, this technology is not yet in wide clinical use. Improvements in MPR could potentially increase the functionality of powered prostheses. To this purpose, o...
Autores principales: | Abbaspour, Sara, Lindén, Maria, Gholamhosseini, Hamid, Naber, Autumn, Ortiz-Catalan, Max |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946760/ https://www.ncbi.nlm.nih.gov/pubmed/31754982 http://dx.doi.org/10.1007/s11517-019-02073-z |
Ejemplares similares
-
Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements
por: Abbaspour, Sara, et al.
Publicado: (2021) -
putEMG—A Surface Electromyography Hand Gesture Recognition Dataset
por: Kaczmarek, Piotr, et al.
Publicado: (2019) -
Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition
por: Ortiz-Catalan, Max
Publicado: (2015) -
Real-time intelligent pattern recognition algorithm for surface EMG signals
por: Khezri, Mahdi, et al.
Publicado: (2007) -
Decoding Attempted Hand Movements in Stroke Patients Using Surface Electromyography
por: Jochumsen, Mads, et al.
Publicado: (2020)