Cargando…

Dietary supplementation with combined extracts from garlic (Allium sativum), brown seaweed (Undaria pinnatifida), and pinecone (Pinus koraiensis) improves milk production in Holstein cows under heat stress conditions

OBJECTIVE: This study was conducted to examine the effects of a mixture of pinecone oil, garlic, and brown seaweed extracts (PGBE) on milk production traits as well as physiological and ethological parameters in Holstein cows during the summer season (24 May to 03 July 2015, Korea). METHODS: Among t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Jae-Sung, Kang, Sukyung, Kim, Min-Jeong, Han, Sung-Gu, Lee, Hong-Gu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946988/
https://www.ncbi.nlm.nih.gov/pubmed/31902187
http://dx.doi.org/10.5713/ajas.19.0536
Descripción
Sumario:OBJECTIVE: This study was conducted to examine the effects of a mixture of pinecone oil, garlic, and brown seaweed extracts (PGBE) on milk production traits as well as physiological and ethological parameters in Holstein cows during the summer season (24 May to 03 July 2015, Korea). METHODS: Among the extract combinations tested, we found that the level of 2,2′-azino-bis (3-ethylberzothiazoline-6-sulphonic acid) cation radical scavenging activity of the 0.16% PBGE complex at ratio of 1:1:1 (vol/vol) was comparable to that of the control (ascorbic acid; 1 mg/mL). Additionally, the PBGE complex reduced lipopolysaccharide-induced COX-2 expression in bovine mammary epithelial cells. Based on these findings, 40 lactating Holstein cows were used to measure the effects of PBGE complex at ratio of 1:1:1 (vol/vol) on milk production, immune response, metabolites, and behavior patterns by dividing the cows into two groups fed diets containing PGBE complex (n = 20; 0.016%/kg feed dry matter basis) or not containing PGBE complex (control, n = 20) for 40 d. RESULTS: Results showed that PGBE complex did not influence milk composition, eating and ear surface temperature patterns, immune response, or metabolic parameters but promoted average milk yield throughout the experimental period. Additionally, a tendency of higher total antioxidant capacity and glutathione in the PGBE group was observed compared to the those in the control. When the temperature-humidity index (THI) exceeded 72 (average THI = 73.8), PGBE complex-fed cows experiencing heat stress showed increased milk yield and a tendency of increased rumination compared to the control. CONCLUSION: We suggest that incorporation of a combined mixture of 0.016% PGBE (1:1:1 ratio, vol/vol) to diet has the potential to improve milk yield and health status of cows under mild to moderate heat stress, denoting that it might be useful as an alternative anti-stressor in the diet of dairy cows under hot conditions.