Cargando…
Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid
OBJECTIVE: Bone morphogenetic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) play important roles in embryonic heart development. Also, two epigenetic modifying molecules, 5ˊ-azacytidine (5ˊ-Aza) and valproic acid (VPA) induce cardiomyogenesis in the infarcted heart. In this study, we fi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royan Institute
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947007/ https://www.ncbi.nlm.nih.gov/pubmed/31863652 http://dx.doi.org/10.22074/cellj.2020.6582 |
_version_ | 1783485469637476352 |
---|---|
author | Hasani, Sanaz Javeri, Arash Asadi, Asadollah Taha, Masoumeh Fakhr |
author_facet | Hasani, Sanaz Javeri, Arash Asadi, Asadollah Taha, Masoumeh Fakhr |
author_sort | Hasani, Sanaz |
collection | PubMed |
description | OBJECTIVE: Bone morphogenetic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) play important roles in embryonic heart development. Also, two epigenetic modifying molecules, 5ˊ-azacytidine (5ˊ-Aza) and valproic acid (VPA) induce cardiomyogenesis in the infarcted heart. In this study, we first evaluated the role of BMP4 and bFGF in cardiac trans-differentiation and then the effectiveness of 5´-Aza and VPA in reprogramming and cardiac differentiation of human adipose tissue-derived stem cells (ADSCs). MATERIALS AND METHODS: In this experimental study, human ADSCs were isolated by collagenase I digestion. For cardiac differentiation, third to fifth-passaged ADSCs were treated with BMP4 alone or a combination of BMP4 and bFGF with or without 5ˊ-Aza and VPA pre-treatment. After 21 days, the expression of cardiac-specific markers was evaluated by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, immunocytochemistry, flow cytometry and western blot analyses. RESULTS: BMP4 and more prominently a combination of BMP4 and bFGF induced cardiac differentiation of human ADSCs. Epigenetic modification of the ADSCs by 5ˊ-Aza and VPA significantly upregulated the expression of OCT4A, SOX2, NANOG, Brachyury/T and GATA4 but downregulated GSC and NES mRNAs. Furthermore, pre-treatment with 5ˊ-Aza and VPA upregulated the expression of TBX5, ANF, CX43 and CXCR4 mRNAs in three-week differentiated ADSCs but downregulated the expression of some cardiac-specific genes and decreased the population of cardiac troponin I-expressing cells. CONCLUSION: Our findings demonstrated the inductive role of BMP4 and especially BMP4 and bFGF combination in cardiac trans-differentiation of human ADSCs. Treatment with 5ˊ-Aza and VPA reprogrammed ADSCs toward a more pluripotent state and increased tendency of the ADSCs for mesodermal differentiation. Although pre-treatment with 5ˊ-Aza and VPA counteracted the cardiogenic effects of BMP4 and bFGF, it may be in favor of migration, engraftment and survival of the ADSCs after transplantation. |
format | Online Article Text |
id | pubmed-6947007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Royan Institute |
record_format | MEDLINE/PubMed |
spelling | pubmed-69470072020-10-01 Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid Hasani, Sanaz Javeri, Arash Asadi, Asadollah Taha, Masoumeh Fakhr Cell J Original Article OBJECTIVE: Bone morphogenetic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) play important roles in embryonic heart development. Also, two epigenetic modifying molecules, 5ˊ-azacytidine (5ˊ-Aza) and valproic acid (VPA) induce cardiomyogenesis in the infarcted heart. In this study, we first evaluated the role of BMP4 and bFGF in cardiac trans-differentiation and then the effectiveness of 5´-Aza and VPA in reprogramming and cardiac differentiation of human adipose tissue-derived stem cells (ADSCs). MATERIALS AND METHODS: In this experimental study, human ADSCs were isolated by collagenase I digestion. For cardiac differentiation, third to fifth-passaged ADSCs were treated with BMP4 alone or a combination of BMP4 and bFGF with or without 5ˊ-Aza and VPA pre-treatment. After 21 days, the expression of cardiac-specific markers was evaluated by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, immunocytochemistry, flow cytometry and western blot analyses. RESULTS: BMP4 and more prominently a combination of BMP4 and bFGF induced cardiac differentiation of human ADSCs. Epigenetic modification of the ADSCs by 5ˊ-Aza and VPA significantly upregulated the expression of OCT4A, SOX2, NANOG, Brachyury/T and GATA4 but downregulated GSC and NES mRNAs. Furthermore, pre-treatment with 5ˊ-Aza and VPA upregulated the expression of TBX5, ANF, CX43 and CXCR4 mRNAs in three-week differentiated ADSCs but downregulated the expression of some cardiac-specific genes and decreased the population of cardiac troponin I-expressing cells. CONCLUSION: Our findings demonstrated the inductive role of BMP4 and especially BMP4 and bFGF combination in cardiac trans-differentiation of human ADSCs. Treatment with 5ˊ-Aza and VPA reprogrammed ADSCs toward a more pluripotent state and increased tendency of the ADSCs for mesodermal differentiation. Although pre-treatment with 5ˊ-Aza and VPA counteracted the cardiogenic effects of BMP4 and bFGF, it may be in favor of migration, engraftment and survival of the ADSCs after transplantation. Royan Institute 2020 2019-12-15 /pmc/articles/PMC6947007/ /pubmed/31863652 http://dx.doi.org/10.22074/cellj.2020.6582 Text en The Cell Journal (Yakhteh) is an open access journal which means the articles are freely available online for any individual author to download and use the providing address. The journal is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported License which allows the author(s) to hold the copyright without restrictions that is permitting unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. http://creativecommons.org/licenses/by/3/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Hasani, Sanaz Javeri, Arash Asadi, Asadollah Taha, Masoumeh Fakhr Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid |
title | Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid |
title_full | Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid |
title_fullStr | Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid |
title_full_unstemmed | Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid |
title_short | Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid |
title_sort | cardiac differentiation of adipose tissue-derived stem cells is driven by bmp4 and bfgf but counteracted by 5-azacytidine and valproic acid |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947007/ https://www.ncbi.nlm.nih.gov/pubmed/31863652 http://dx.doi.org/10.22074/cellj.2020.6582 |
work_keys_str_mv | AT hasanisanaz cardiacdifferentiationofadiposetissuederivedstemcellsisdrivenbybmp4andbfgfbutcounteractedby5azacytidineandvalproicacid AT javeriarash cardiacdifferentiationofadiposetissuederivedstemcellsisdrivenbybmp4andbfgfbutcounteractedby5azacytidineandvalproicacid AT asadiasadollah cardiacdifferentiationofadiposetissuederivedstemcellsisdrivenbybmp4andbfgfbutcounteractedby5azacytidineandvalproicacid AT tahamasoumehfakhr cardiacdifferentiationofadiposetissuederivedstemcellsisdrivenbybmp4andbfgfbutcounteractedby5azacytidineandvalproicacid |