Cargando…
Adverse Drug Reaction Detection in Social Media by Deep Learning Methods
OBJECTIVE: Health-related studies have been recently at the heart attention of the media. Social media, such as Twitter, has become a valuable online tool to describe the early detection of various adverse drug reactions (ADRs). Different medications have adverse effects on various cells and tissues...
Autores principales: | Rezaei, Zahra, Ebrahimpour-Komleh, Hossein, Eslami, Behnaz, Chavoshinejad, Ramyar, Totonchi, Mehdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royan Institute
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947008/ https://www.ncbi.nlm.nih.gov/pubmed/31863657 http://dx.doi.org/10.22074/cellj.2020.6615 |
Ejemplares similares
-
Automated Segmentation of Abnormal Tissues in Medical Images
por: Homayoun, Hassan, et al.
Publicado: (2021) -
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
por: Khastavaneh, H., et al.
Publicado: (2017) -
Predicting Adverse Drug Reactions from Social Media Posts: Data Balance, Feature Selection and Deep Learning
por: Huang, Jhih-Yuan, et al.
Publicado: (2022) -
An evolutionary decomposition-based multi-objective feature selection for multi-label classification
por: Asilian Bidgoli, Azam, et al.
Publicado: (2020) -
Relation Extraction of Protein Complexes from Dynamic Protein-Protein Interaction Network
por: Mohammadi Jenghara, Moslem, et al.
Publicado: (2021)