Cargando…
Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System
Experimental investigations of propagating vortex flow states (pV states) in a short Taylor–Couette system with asymmetric boundary conditions are presented. The flow state was established in a ferrofluid showing no magneto-viscous effect and was exposed to axial magnetic fields. It was found that t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947023/ https://www.ncbi.nlm.nih.gov/pubmed/31817153 http://dx.doi.org/10.3390/ma12244027 |
_version_ | 1783485473592705024 |
---|---|
author | Ilzig, Thomas Stöckel, Katharina Odenbach, Stefan |
author_facet | Ilzig, Thomas Stöckel, Katharina Odenbach, Stefan |
author_sort | Ilzig, Thomas |
collection | PubMed |
description | Experimental investigations of propagating vortex flow states (pV states) in a short Taylor–Couette system with asymmetric boundary conditions are presented. The flow state was established in a ferrofluid showing no magneto-viscous effect and was exposed to axial magnetic fields. It was found that the magnetic field led to a change in the spatial and temporal behavior of the pV state, indicating complex interactions between the flow field and magnetic field. A stepwise applied axial magnetic field destabilized the pV state, leading to an intermittent flow state. Gradually increasing the axial magnetic fields changed the temporal behavior of the regime. Up to magnetic field strengths of 20 kA/m, the orbital frequency, as a measure for the temporal periodicity, was increased with field strength. |
format | Online Article Text |
id | pubmed-6947023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69470232020-01-13 Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System Ilzig, Thomas Stöckel, Katharina Odenbach, Stefan Materials (Basel) Article Experimental investigations of propagating vortex flow states (pV states) in a short Taylor–Couette system with asymmetric boundary conditions are presented. The flow state was established in a ferrofluid showing no magneto-viscous effect and was exposed to axial magnetic fields. It was found that the magnetic field led to a change in the spatial and temporal behavior of the pV state, indicating complex interactions between the flow field and magnetic field. A stepwise applied axial magnetic field destabilized the pV state, leading to an intermittent flow state. Gradually increasing the axial magnetic fields changed the temporal behavior of the regime. Up to magnetic field strengths of 20 kA/m, the orbital frequency, as a measure for the temporal periodicity, was increased with field strength. MDPI 2019-12-04 /pmc/articles/PMC6947023/ /pubmed/31817153 http://dx.doi.org/10.3390/ma12244027 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ilzig, Thomas Stöckel, Katharina Odenbach, Stefan Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System |
title | Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System |
title_full | Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System |
title_fullStr | Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System |
title_full_unstemmed | Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System |
title_short | Experimental Investigations on the Effect of Axial Homogenous Magnetic Fields on Propagating Vortex Flow in the Taylor–Couette System |
title_sort | experimental investigations on the effect of axial homogenous magnetic fields on propagating vortex flow in the taylor–couette system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947023/ https://www.ncbi.nlm.nih.gov/pubmed/31817153 http://dx.doi.org/10.3390/ma12244027 |
work_keys_str_mv | AT ilzigthomas experimentalinvestigationsontheeffectofaxialhomogenousmagneticfieldsonpropagatingvortexflowinthetaylorcouettesystem AT stockelkatharina experimentalinvestigationsontheeffectofaxialhomogenousmagneticfieldsonpropagatingvortexflowinthetaylorcouettesystem AT odenbachstefan experimentalinvestigationsontheeffectofaxialhomogenousmagneticfieldsonpropagatingvortexflowinthetaylorcouettesystem |