Cargando…
Functionalized rGO Interlayers Improve the Fill Factor and Current Density in PbS QDs-Based Solar Cells
Graphene-quantum dot nanocomposites attract significant attention for novel optoelectronic devices, such as ultrafast photodetectors and third-generation solar cells. Combining the remarkable optical properties of quantum dots (QDs) with the exceptional electrical properties of graphene derivatives...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947317/ https://www.ncbi.nlm.nih.gov/pubmed/31888184 http://dx.doi.org/10.3390/ma12244221 |
Sumario: | Graphene-quantum dot nanocomposites attract significant attention for novel optoelectronic devices, such as ultrafast photodetectors and third-generation solar cells. Combining the remarkable optical properties of quantum dots (QDs) with the exceptional electrical properties of graphene derivatives opens a vast perspective for further growth in solar cell efficiency. Here, we applied (3-mercaptopropyl) trimethoxysilane functionalized reduced graphene oxide (f-rGO) to improve the QDs-based solar cell active layer. The different strategies of f-rGO embedding are explored. When f-rGO interlayers are inserted between PbS QD layers, the solar cells demonstrate a higher current density and a better fill factor. A combined study of the morphological and electrical parameters of the solar cells shows that the improved efficiency is associated with better layer homogeneity, lower trap-state densities, higher charge carrier concentrations, and the blocking of the minor charge carriers. |
---|