Cargando…
A Parasitic Resistance-Adapted Programming Scheme for Memristor Crossbar-Based Neuromorphic Computing Systems
Memristor crossbar arrays without selector devices, such as complementary-metal oxide semiconductor (CMOS) devices, are a potential for realizing neuromorphic computing systems. However, wire resistance of metal wires is one of the factors that degrade the performance of memristor crossbar circuits....
Autor principal: | Ngoc Truong, Son |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947318/ https://www.ncbi.nlm.nih.gov/pubmed/31817956 http://dx.doi.org/10.3390/ma12244097 |
Ejemplares similares
-
Research on the Impact of Data Density on Memristor Crossbar Architectures in Neuromorphic Pattern Recognition
por: Le, Minh, et al.
Publicado: (2023) -
Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition
por: Truong, Son Ngoc, et al.
Publicado: (2014) -
Compensating Circuit to Reduce the Impact of Wire Resistance in a Memristor Crossbar-Based Perceptron Neural Network
por: Ngoc Truong, Son
Publicado: (2019) -
Asymmetrical Training Scheme of Binary-Memristor-Crossbar-Based Neural Networks for Energy-Efficient Edge-Computing Nanoscale Systems
por: Pham, Khoa Van, et al.
Publicado: (2019) -
Noise and Memristance Variation Tolerance of Single Crossbar Architectures for Neuromorphic Image Recognition
por: Le, Minh, et al.
Publicado: (2021)