Cargando…
High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint
Low-carbon steels are commonly used in welded steel structures and are exposed to various fatigue conditions, depending on the application. We demonstrate that the various transitions in the fracture mode during fatigue testing can be distinguished by their different cyclic response curves and micro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947338/ https://www.ncbi.nlm.nih.gov/pubmed/31818031 http://dx.doi.org/10.3390/ma12244111 |
_version_ | 1783485527334322176 |
---|---|
author | Kim, Younghune Hwang, Woonbong |
author_facet | Kim, Younghune Hwang, Woonbong |
author_sort | Kim, Younghune |
collection | PubMed |
description | Low-carbon steels are commonly used in welded steel structures and are exposed to various fatigue conditions, depending on the application. We demonstrate that the various transitions in the fracture mode during fatigue testing can be distinguished by their different cyclic response curves and microstructural features after fracture. Fractography, surface damage micrographs, and microstructural evolution clearly indicated the transition of the fracture modes from high-cycle to low-cycle, extremely low-cycle fatigue, and monotonic behavior. The high-cycle fatigue mode showed initial cyclic softening, followed by cyclic stabilization, and showed inclusion-induced crack initiation at fish-eyes, while the low-cycle fatigue mode showed initial cyclic hardening followed by cyclic stabilization, where fractography images showed obvious striations. In addition, the extremely low-cycle fatigue mode showed no cyclic stabilization after initial cyclic hardening, which was characterized by quasi-cleavage fractures with a few micro-dimples and transgranular cracking, while the monotonic fracture mode predominantly showed micro-dimples. |
format | Online Article Text |
id | pubmed-6947338 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69473382020-01-13 High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint Kim, Younghune Hwang, Woonbong Materials (Basel) Article Low-carbon steels are commonly used in welded steel structures and are exposed to various fatigue conditions, depending on the application. We demonstrate that the various transitions in the fracture mode during fatigue testing can be distinguished by their different cyclic response curves and microstructural features after fracture. Fractography, surface damage micrographs, and microstructural evolution clearly indicated the transition of the fracture modes from high-cycle to low-cycle, extremely low-cycle fatigue, and monotonic behavior. The high-cycle fatigue mode showed initial cyclic softening, followed by cyclic stabilization, and showed inclusion-induced crack initiation at fish-eyes, while the low-cycle fatigue mode showed initial cyclic hardening followed by cyclic stabilization, where fractography images showed obvious striations. In addition, the extremely low-cycle fatigue mode showed no cyclic stabilization after initial cyclic hardening, which was characterized by quasi-cleavage fractures with a few micro-dimples and transgranular cracking, while the monotonic fracture mode predominantly showed micro-dimples. MDPI 2019-12-09 /pmc/articles/PMC6947338/ /pubmed/31818031 http://dx.doi.org/10.3390/ma12244111 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Younghune Hwang, Woonbong High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint |
title | High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint |
title_full | High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint |
title_fullStr | High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint |
title_full_unstemmed | High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint |
title_short | High-Cycle, Low-Cycle, Extremely Low-Cycle Fatigue and Monotonic Fracture Behaviors of Low-Carbon Steel and Its Welded Joint |
title_sort | high-cycle, low-cycle, extremely low-cycle fatigue and monotonic fracture behaviors of low-carbon steel and its welded joint |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947338/ https://www.ncbi.nlm.nih.gov/pubmed/31818031 http://dx.doi.org/10.3390/ma12244111 |
work_keys_str_mv | AT kimyounghune highcyclelowcycleextremelylowcyclefatigueandmonotonicfracturebehaviorsoflowcarbonsteelanditsweldedjoint AT hwangwoonbong highcyclelowcycleextremelylowcyclefatigueandmonotonicfracturebehaviorsoflowcarbonsteelanditsweldedjoint |