Cargando…
Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading
The recycling of waste tires in lightweight aggregate concrete (LC) would achieve huge environmental and societal benefits, but the effects of rubber particles on the partial properties of LC are not clear (e.g., the stress–strain relationship). In this paper, uniaxial compressive experiments were c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947396/ https://www.ncbi.nlm.nih.gov/pubmed/31817506 http://dx.doi.org/10.3390/ma12244064 |
_version_ | 1783485540951130112 |
---|---|
author | Lv, Jing Zhou, Tianhua Du, Qiang Li, Kunlun Sun, Kai |
author_facet | Lv, Jing Zhou, Tianhua Du, Qiang Li, Kunlun Sun, Kai |
author_sort | Lv, Jing |
collection | PubMed |
description | The recycling of waste tires in lightweight aggregate concrete (LC) would achieve huge environmental and societal benefits, but the effects of rubber particles on the partial properties of LC are not clear (e.g., the stress–strain relationship). In this paper, uniaxial compressive experiments were conducted to evaluate the stress–strain relationship of self-compacting rubber lightweight aggregate concrete (SCRLC). Rubber particles were used to replace sand by volume, and substitution percentages of 0%, 10%, 20%, 30%, 40%, and 50% were set as influence factors. Experimental results indicate that with increased rubber particles substitution percentage, the cubic compressive strength and axial compressive strength of SCRLC decreased, while the failure modes of SCRLC prism specimens gradually changed from brittle to ductile failure. As the rubber particles substitution percentage increased from 0% to 50%, the peak strain of SCRLC increased whereas peak stress, elastic modulus, and peak secant modulus of SCRLC deceased, the descending stage of stress–strain curves became softer. The rubber particles substitution percentage of 30% was the critical point at which an obvious change in the properties of SCRLC occurred. Based on the data collected from experimental studies, a predictive model for SCRLC was established and a further prediction of the SCRLC stress–strain relationship was given. |
format | Online Article Text |
id | pubmed-6947396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69473962020-01-13 Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading Lv, Jing Zhou, Tianhua Du, Qiang Li, Kunlun Sun, Kai Materials (Basel) Article The recycling of waste tires in lightweight aggregate concrete (LC) would achieve huge environmental and societal benefits, but the effects of rubber particles on the partial properties of LC are not clear (e.g., the stress–strain relationship). In this paper, uniaxial compressive experiments were conducted to evaluate the stress–strain relationship of self-compacting rubber lightweight aggregate concrete (SCRLC). Rubber particles were used to replace sand by volume, and substitution percentages of 0%, 10%, 20%, 30%, 40%, and 50% were set as influence factors. Experimental results indicate that with increased rubber particles substitution percentage, the cubic compressive strength and axial compressive strength of SCRLC decreased, while the failure modes of SCRLC prism specimens gradually changed from brittle to ductile failure. As the rubber particles substitution percentage increased from 0% to 50%, the peak strain of SCRLC increased whereas peak stress, elastic modulus, and peak secant modulus of SCRLC deceased, the descending stage of stress–strain curves became softer. The rubber particles substitution percentage of 30% was the critical point at which an obvious change in the properties of SCRLC occurred. Based on the data collected from experimental studies, a predictive model for SCRLC was established and a further prediction of the SCRLC stress–strain relationship was given. MDPI 2019-12-05 /pmc/articles/PMC6947396/ /pubmed/31817506 http://dx.doi.org/10.3390/ma12244064 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lv, Jing Zhou, Tianhua Du, Qiang Li, Kunlun Sun, Kai Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading |
title | Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading |
title_full | Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading |
title_fullStr | Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading |
title_full_unstemmed | Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading |
title_short | Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading |
title_sort | evaluation of stress–strain behavior of self-compacting rubber lightweight aggregate concrete under uniaxial compression loading |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947396/ https://www.ncbi.nlm.nih.gov/pubmed/31817506 http://dx.doi.org/10.3390/ma12244064 |
work_keys_str_mv | AT lvjing evaluationofstressstrainbehaviorofselfcompactingrubberlightweightaggregateconcreteunderuniaxialcompressionloading AT zhoutianhua evaluationofstressstrainbehaviorofselfcompactingrubberlightweightaggregateconcreteunderuniaxialcompressionloading AT duqiang evaluationofstressstrainbehaviorofselfcompactingrubberlightweightaggregateconcreteunderuniaxialcompressionloading AT likunlun evaluationofstressstrainbehaviorofselfcompactingrubberlightweightaggregateconcreteunderuniaxialcompressionloading AT sunkai evaluationofstressstrainbehaviorofselfcompactingrubberlightweightaggregateconcreteunderuniaxialcompressionloading |