Cargando…

3D‐Printed Sugar Scaffold for High‐Precision and Highly Sensitive Active and Passive Wearable Sensors

In this study, a pairing of a previously unidentified 3D printing technique and soft materials is introduced in order to achieve not only high‐resolution printed features and flexibility of the 3D‐printed materials, but also its light‐weight and electrical conductivity. Using the developed technique...

Descripción completa

Detalles Bibliográficos
Autores principales: Ho, Dong Hae, Hong, Panuk, Han, Joong Tark, Kim, Sang‐Youn, Kwon, S. Joon, Cho, Jeong Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947489/
https://www.ncbi.nlm.nih.gov/pubmed/31921572
http://dx.doi.org/10.1002/advs.201902521
Descripción
Sumario:In this study, a pairing of a previously unidentified 3D printing technique and soft materials is introduced in order to achieve not only high‐resolution printed features and flexibility of the 3D‐printed materials, but also its light‐weight and electrical conductivity. Using the developed technique and materials, high‐precision and highly sensitive patient‐specific wearable active or passive devices are fabricated for personalized health monitoring. The fabricated biosensors show low density and substantial flexibility because of 3D microcellular network‐type interconnected conductive materials that are readily printed using an inkjet head. Using high‐resolution 3D scanned body‐shape data, on‐demand personalized wearable sensors made of the 3D‐printed soft and conductive materials are fabricated. These sensors successfully detect both actively changing body strain signals and passively changing signals such as electromyography (EMG), electrodermal activity (EDA), and electroencephalogram EEG. The accurately tailored subject‐specific shape of the developed sensors exhibits higher sensitivity and faster real‐time sensing performances in the monitoring of rapidly changing human body signals. The newly developed 3D printing technique and materials can be widely applied to various types of wearable, flexible, and light‐weight biosensors for use in a variety of inexpensive on‐demand and personalized point‐of‐care diagnostics.