Cargando…
A High-Performance Computing Implementation of Iterative Random Forest for the Creation of Predictive Expression Networks
As time progresses and technology improves, biological data sets are continuously increasing in size. New methods and new implementations of existing methods are needed to keep pace with this increase. In this paper, we present a high-performance computing (HPC)-capable implementation of Iterative R...
Autores principales: | Cliff, Ashley, Romero, Jonathon, Kainer, David, Walker, Angelica, Furches, Anna, Jacobson, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947651/ https://www.ncbi.nlm.nih.gov/pubmed/31810264 http://dx.doi.org/10.3390/genes10120996 |
Ejemplares similares
-
Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data
por: Walker, Angelica M., et al.
Publicado: (2022) -
Using iterative random forest to find geospatial environmental and Sociodemographic predictors of suicide attempts
por: Pavicic, Mirko, et al.
Publicado: (2023) -
Iterative random forests to discover predictive and stable high-order interactions
por: Basu, Sumanta, et al.
Publicado: (2018) -
A balanced iterative random forest for gene selection from microarray data
por: Anaissi, Ali, et al.
Publicado: (2013) -
Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
por: Noshay, Jaclyn M, et al.
Publicado: (2023)