Cargando…
Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal
Objective: The goal was to develop a pediatric airway stent for treating tracheobronchomalacia that could be used as an alternative to positive pressure ventilation. The design goals were for the stent to allow mucus flow and to resist migration inside the airways, while also enabling easy insertion...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947666/ https://www.ncbi.nlm.nih.gov/pubmed/30990171 http://dx.doi.org/10.1109/TBME.2019.2910551 |
_version_ | 1783485601751760896 |
---|---|
collection | PubMed |
description | Objective: The goal was to develop a pediatric airway stent for treating tracheobronchomalacia that could be used as an alternative to positive pressure ventilation. The design goals were for the stent to allow mucus flow and to resist migration inside the airways, while also enabling easy insertion and removal. Methods: A helical stent design, together with insertion and removal tools, is presented. A mechanics model of stent compression is derived to assist in selecting stent design parameters (pitch and wire diameter) that provide the desired amount of tracheal support, while introducing the minimal amount of foreign material into the airway. Worst-case airway area reduction with stent support is investigated experimentally using a pressurized tracheal phantom matched to porcine tracheal tissue properties. The stent design is then evaluated in a porcine in vivo experiment. Results: Phantom testing validated the mechanics model of stent compression. In vivo testing demonstrated that the stent was well tolerated by the animal. Since the helical design covers only a small portion of the epithelium, mucus transport through the stented region was minimally impeded. Furthermore, the screw-like stent resisted migration, while also providing for atraumatic removal through the use of an unscrewing motion during removal. Conclusion: The proposed stent design and tools represent a promising approach to prevent airway collapse in children with tracheobronchomalacia. Significance: The proposed technology overcomes the limitations of existing airway stents and may provide an alternative to maintaining children on a ventilator. |
format | Online Article Text |
id | pubmed-6947666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | IEEE |
record_format | MEDLINE/PubMed |
spelling | pubmed-69476662020-05-07 Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal IEEE Trans Biomed Eng Article Objective: The goal was to develop a pediatric airway stent for treating tracheobronchomalacia that could be used as an alternative to positive pressure ventilation. The design goals were for the stent to allow mucus flow and to resist migration inside the airways, while also enabling easy insertion and removal. Methods: A helical stent design, together with insertion and removal tools, is presented. A mechanics model of stent compression is derived to assist in selecting stent design parameters (pitch and wire diameter) that provide the desired amount of tracheal support, while introducing the minimal amount of foreign material into the airway. Worst-case airway area reduction with stent support is investigated experimentally using a pressurized tracheal phantom matched to porcine tracheal tissue properties. The stent design is then evaluated in a porcine in vivo experiment. Results: Phantom testing validated the mechanics model of stent compression. In vivo testing demonstrated that the stent was well tolerated by the animal. Since the helical design covers only a small portion of the epithelium, mucus transport through the stented region was minimally impeded. Furthermore, the screw-like stent resisted migration, while also providing for atraumatic removal through the use of an unscrewing motion during removal. Conclusion: The proposed stent design and tools represent a promising approach to prevent airway collapse in children with tracheobronchomalacia. Significance: The proposed technology overcomes the limitations of existing airway stents and may provide an alternative to maintaining children on a ventilator. IEEE 2019-04-11 /pmc/articles/PMC6947666/ /pubmed/30990171 http://dx.doi.org/10.1109/TBME.2019.2910551 Text en https://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal |
title | Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal |
title_full | Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal |
title_fullStr | Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal |
title_full_unstemmed | Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal |
title_short | Pediatric Airway Stent Designed to Facilitate Mucus Transport and Atraumatic Removal |
title_sort | pediatric airway stent designed to facilitate mucus transport and atraumatic removal |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947666/ https://www.ncbi.nlm.nih.gov/pubmed/30990171 http://dx.doi.org/10.1109/TBME.2019.2910551 |
work_keys_str_mv | AT pediatricairwaystentdesignedtofacilitatemucustransportandatraumaticremoval AT pediatricairwaystentdesignedtofacilitatemucustransportandatraumaticremoval AT pediatricairwaystentdesignedtofacilitatemucustransportandatraumaticremoval AT pediatricairwaystentdesignedtofacilitatemucustransportandatraumaticremoval AT pediatricairwaystentdesignedtofacilitatemucustransportandatraumaticremoval |