Cargando…
Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations
BACKGROUND: Genotyping by sequencing (GBS) still has problems with missing genotypes. Imputation is important for using GBS for genomic predictions, especially for low depths, due to the large number of missing genotypes. Minor allele frequency (MAF) is widely used as a marker data editing criteria...
Autores principales: | Wang, Xiao, Su, Guosheng, Hao, Dan, Lund, Mogens Sandø, Kadarmideen, Haja N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947967/ https://www.ncbi.nlm.nih.gov/pubmed/31921417 http://dx.doi.org/10.1186/s40104-019-0407-9 |
Ejemplares similares
-
Improving genomic predictions by correction of genotypes from genotyping by sequencing in livestock populations
por: Wang, Xiao, et al.
Publicado: (2019) -
Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle
por: Brøndum, Rasmus Froberg, et al.
Publicado: (2014) -
Reliabilities of Genomic Prediction for Young Stock Survival Traits Using 54K SNP Chip Augmented With Additional Single-Nucleotide Polymorphisms Selected From Imputed Whole-Genome Sequencing Data
por: Gebreyesus, Grum, et al.
Publicado: (2021) -
Imputation for sequencing variants preselected to a customized low-density chip
por: Liu, Aoxing, et al.
Publicado: (2020) -
A comparison of bivariate and univariate QTL mapping in livestock populations
por: Sørensen, Peter, et al.
Publicado: (2003)