Cargando…

Identification of Mitochondrial Ligands with Hepatoprotective Activity from Notopterygii Rhizoma et Radix Using Affinity Ultrafiltration/Liquid Chromatography/Mass Spectrometry

In recent years, the incidence of diseases associated with hepatic injury has increased in prevalence. Targeting the mitochondria to protect liver function has gained momentum due to their central role in energy production, apoptotic cell death, oxidative stress, calcium homeostasis, and lipid metab...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Li, Li, Feng-Jiao, Liu, Xin, Mu, Jian-Kang, Wang, Xi, Dong, Jin-Cai, Zeng, Lin-Xi, Gu, Wen, Li, Jing-Ping, Yang, Xing-Xin, Yu, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948297/
https://www.ncbi.nlm.nih.gov/pubmed/31950043
http://dx.doi.org/10.1155/2019/5729263
Descripción
Sumario:In recent years, the incidence of diseases associated with hepatic injury has increased in prevalence. Targeting the mitochondria to protect liver function has gained momentum due to their central role in energy production, apoptotic cell death, oxidative stress, calcium homeostasis, and lipid metabolism. In this study, we employed a hepatic mitochondria-based centrifugal ultrafiltration/liquid chromatography/mass spectrometry method (CM-HMC) to identify hepatic mitochondria ligands from medicinal herbs (MHs) including Notopterygii Rhizoma et Radix (NRR) that possess hepatic-protective effects. A total of 4 newly identified mitochondrial ligands were successfully identified by CM-HMC. The mitochondria-regulating activities of 3 of the 4 hits were confirmed using isolated mitochondria. The hepatic-protective effects of one of these hits were validated in carbon tetrachloride-damaged human liver L02 cell models. We have thus identified new natural hepatic-protectants that enhance our understanding of the hepatic-protective mechanisms of MHs. CM-HMC was proven to efficiently screen for mitochondrial ligands from MHs.