Cargando…
DMCNN: A Deep Multiscale Convolutional Neural Network Model for Medical Image Segmentation
Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are common in medical images, and the segmentation a...
Autores principales: | Teng, Lin, Li, Hang, Karim, Shahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948302/ https://www.ncbi.nlm.nih.gov/pubmed/31949890 http://dx.doi.org/10.1155/2019/8597606 |
Ejemplares similares
-
Multiscale Hybrid Convolutional Deep Neural Networks with Channel Attention
por: Yang, Hua, et al.
Publicado: (2022) -
A Deep Learning Approach for Brain Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network
por: Díaz-Pernas, Francisco Javier, et al.
Publicado: (2021) -
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
por: Müller, Dominik, et al.
Publicado: (2021) -
Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation
por: Ding, Yang, et al.
Publicado: (2020) -
Detection of COVID19 from X-ray images using multiscale Deep Convolutional Neural Network
por: Muralidharan, Neha, et al.
Publicado: (2022)