Cargando…

Effect of Single Injection of Recombinant Human Bone Morphogenetic Protein-2-Loaded Artificial Collagen-Like Peptide in a Mouse Segmental Bone Transport Model

This study aimed to investigate whether a single injection of recombinant human bone morphogenetic protein-2-loaded artificial collagen-like peptide gel (rhBMP-2/ACG) accelerates consolidation at the bone defect site and bone union at the docking site in a mouse segmental bone transport (SBT) model....

Descripción completa

Detalles Bibliográficos
Autores principales: Tazawa, Ryo, Minehara, Hiroaki, Matsuura, Terumasa, Kawamura, Tadashi, Uchida, Kentaro, Inoue, Gen, Saito, Wataru, Takaso, Masashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948306/
https://www.ncbi.nlm.nih.gov/pubmed/31950029
http://dx.doi.org/10.1155/2019/1014594
Descripción
Sumario:This study aimed to investigate whether a single injection of recombinant human bone morphogenetic protein-2-loaded artificial collagen-like peptide gel (rhBMP-2/ACG) accelerates consolidation at the bone defect site and bone union at the docking site in a mouse segmental bone transport (SBT) model. A critical sized bone defect (2 mm) was created in the femur of mice and subsequently reconstructed using SBT with an external fixator. Mice were divided into four treatment groups: Group CONT (immobile control), Group 0.2 (bone segments moved 0.2 mm/day for 10 days), Group 1.0 (bone segments moved 1.0 mm/day for 2 days), and Group 1.0/BMP-2 (rhBMP-2/ACG injected into the bone defect and segments moved 1.0 mm/day for 2 days). Consolidation at the bone defect site and bone union at the docking site was evaluated radiologically and histologically across eight weeks. Bone volume and bone mineral content were significantly higher in Group 0.2 than in Group 1.0. Group 0.2 showed evidence of rebuilding of the medullary canal eight weeks after surgery at the bone defect site. However, in Group 1.0, maturation of regenerative bone at the bone defect site was poor, with the central area between the proximal and distal bone composed mainly of masses of fibrous and adipose tissue. Group 1.0/BMP-2 had higher bone volume and bone mineral content compared to Group 1.0, and all mice achieved bone union at the bone defect and docking sites. Single injection of rhBMP-2/ACG combined with SBT may be effective for enhancing bone healing in large bone defects.