Cargando…

Bile acid metabolites control Th17 and Treg cell differentiation

Bile acids are abundant in the mammalian gut where they undergo bacteria-mediated transformation, generating a large pool of bioactive molecules. Although bile acids are known to affect host metabolism, cancer progression and innate immunity, it is unknown whether they affect adaptive immune cells s...

Descripción completa

Detalles Bibliográficos
Autores principales: Hang, Saiyu, Paik, Donggi, Yao, Lina, Kim, Eunha, Jamma, Trinath, Lu, Jingping, Ha, Soyoung, Nelson, Brandon N., Kelly, Samantha P., Wu, Lin, Zheng, Ye, Longman, Randy S., Rastinejad, Fraydoon, Devlin, A. Sloan, Krout, Michael R., Fischbach, Michael A., Littman, Dan R., Huh, Jun R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949019/
https://www.ncbi.nlm.nih.gov/pubmed/31776512
http://dx.doi.org/10.1038/s41586-019-1785-z
_version_ 1783485833867689984
author Hang, Saiyu
Paik, Donggi
Yao, Lina
Kim, Eunha
Jamma, Trinath
Lu, Jingping
Ha, Soyoung
Nelson, Brandon N.
Kelly, Samantha P.
Wu, Lin
Zheng, Ye
Longman, Randy S.
Rastinejad, Fraydoon
Devlin, A. Sloan
Krout, Michael R.
Fischbach, Michael A.
Littman, Dan R.
Huh, Jun R.
author_facet Hang, Saiyu
Paik, Donggi
Yao, Lina
Kim, Eunha
Jamma, Trinath
Lu, Jingping
Ha, Soyoung
Nelson, Brandon N.
Kelly, Samantha P.
Wu, Lin
Zheng, Ye
Longman, Randy S.
Rastinejad, Fraydoon
Devlin, A. Sloan
Krout, Michael R.
Fischbach, Michael A.
Littman, Dan R.
Huh, Jun R.
author_sort Hang, Saiyu
collection PubMed
description Bile acids are abundant in the mammalian gut where they undergo bacteria-mediated transformation, generating a large pool of bioactive molecules. Although bile acids are known to affect host metabolism, cancer progression and innate immunity, it is unknown whether they affect adaptive immune cells such as T helper cells expressing IL-17a (Th17 cells) and regulatory T cells (Tregs). By screening a library of bile acid metabolites, we identified two distinct derivatives of lithocholic acid (LCA), 3-oxoLCA and isoalloLCA, as T cell regulators. 3-oxoLCA inhibited Th17 cell differentiation by directly binding to its key transcription factor RORγt (retinoid-related orphan receptor γt) and isoalloLCA enhanced Treg differentiation through the production of mitochondrial reactive oxygen species (mitoROS), leading to increased FoxP3 expression. IsoalloLCA-mediated Treg enhancement required an intronic FoxP3 enhancer, the conserved noncoding sequence 3 (CNS3), a distinct mode of action from previously-identified Treg enhancing metabolites that require CNS1. Administration of 3-oxoLCA and isoalloLCA to mice reduced Th17 and increased Treg cell differentiation in the intestinal lamina propria. Our data suggest novel mechanisms by which bile acid metabolites control host immune responses by directly modulating the Th17 and Treg balance.
format Online
Article
Text
id pubmed-6949019
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-69490192020-05-27 Bile acid metabolites control Th17 and Treg cell differentiation Hang, Saiyu Paik, Donggi Yao, Lina Kim, Eunha Jamma, Trinath Lu, Jingping Ha, Soyoung Nelson, Brandon N. Kelly, Samantha P. Wu, Lin Zheng, Ye Longman, Randy S. Rastinejad, Fraydoon Devlin, A. Sloan Krout, Michael R. Fischbach, Michael A. Littman, Dan R. Huh, Jun R. Nature Article Bile acids are abundant in the mammalian gut where they undergo bacteria-mediated transformation, generating a large pool of bioactive molecules. Although bile acids are known to affect host metabolism, cancer progression and innate immunity, it is unknown whether they affect adaptive immune cells such as T helper cells expressing IL-17a (Th17 cells) and regulatory T cells (Tregs). By screening a library of bile acid metabolites, we identified two distinct derivatives of lithocholic acid (LCA), 3-oxoLCA and isoalloLCA, as T cell regulators. 3-oxoLCA inhibited Th17 cell differentiation by directly binding to its key transcription factor RORγt (retinoid-related orphan receptor γt) and isoalloLCA enhanced Treg differentiation through the production of mitochondrial reactive oxygen species (mitoROS), leading to increased FoxP3 expression. IsoalloLCA-mediated Treg enhancement required an intronic FoxP3 enhancer, the conserved noncoding sequence 3 (CNS3), a distinct mode of action from previously-identified Treg enhancing metabolites that require CNS1. Administration of 3-oxoLCA and isoalloLCA to mice reduced Th17 and increased Treg cell differentiation in the intestinal lamina propria. Our data suggest novel mechanisms by which bile acid metabolites control host immune responses by directly modulating the Th17 and Treg balance. 2019-11-27 2019-12 /pmc/articles/PMC6949019/ /pubmed/31776512 http://dx.doi.org/10.1038/s41586-019-1785-z Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Hang, Saiyu
Paik, Donggi
Yao, Lina
Kim, Eunha
Jamma, Trinath
Lu, Jingping
Ha, Soyoung
Nelson, Brandon N.
Kelly, Samantha P.
Wu, Lin
Zheng, Ye
Longman, Randy S.
Rastinejad, Fraydoon
Devlin, A. Sloan
Krout, Michael R.
Fischbach, Michael A.
Littman, Dan R.
Huh, Jun R.
Bile acid metabolites control Th17 and Treg cell differentiation
title Bile acid metabolites control Th17 and Treg cell differentiation
title_full Bile acid metabolites control Th17 and Treg cell differentiation
title_fullStr Bile acid metabolites control Th17 and Treg cell differentiation
title_full_unstemmed Bile acid metabolites control Th17 and Treg cell differentiation
title_short Bile acid metabolites control Th17 and Treg cell differentiation
title_sort bile acid metabolites control th17 and treg cell differentiation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949019/
https://www.ncbi.nlm.nih.gov/pubmed/31776512
http://dx.doi.org/10.1038/s41586-019-1785-z
work_keys_str_mv AT hangsaiyu bileacidmetabolitescontrolth17andtregcelldifferentiation
AT paikdonggi bileacidmetabolitescontrolth17andtregcelldifferentiation
AT yaolina bileacidmetabolitescontrolth17andtregcelldifferentiation
AT kimeunha bileacidmetabolitescontrolth17andtregcelldifferentiation
AT jammatrinath bileacidmetabolitescontrolth17andtregcelldifferentiation
AT lujingping bileacidmetabolitescontrolth17andtregcelldifferentiation
AT hasoyoung bileacidmetabolitescontrolth17andtregcelldifferentiation
AT nelsonbrandonn bileacidmetabolitescontrolth17andtregcelldifferentiation
AT kellysamanthap bileacidmetabolitescontrolth17andtregcelldifferentiation
AT wulin bileacidmetabolitescontrolth17andtregcelldifferentiation
AT zhengye bileacidmetabolitescontrolth17andtregcelldifferentiation
AT longmanrandys bileacidmetabolitescontrolth17andtregcelldifferentiation
AT rastinejadfraydoon bileacidmetabolitescontrolth17andtregcelldifferentiation
AT devlinasloan bileacidmetabolitescontrolth17andtregcelldifferentiation
AT kroutmichaelr bileacidmetabolitescontrolth17andtregcelldifferentiation
AT fischbachmichaela bileacidmetabolitescontrolth17andtregcelldifferentiation
AT littmandanr bileacidmetabolitescontrolth17andtregcelldifferentiation
AT huhjunr bileacidmetabolitescontrolth17andtregcelldifferentiation