Cargando…
Revealing Dynamics of Gene Expression Variability in Cell State Space
To decipher cell state transitions from single-cell transcriptomes it is crucial to quantify weak expression of lineage determining factors, requiring computational methods sensitive to variability of lowly expressed genes. We here introduce VarID, a computational method that identifies locally homo...
Autor principal: | Grün, Dominic |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949127/ https://www.ncbi.nlm.nih.gov/pubmed/31740822 http://dx.doi.org/10.1038/s41592-019-0632-3 |
Ejemplares similares
-
Behavioral Context Determines Network State and Variability Dynamics in Monkey Motor Cortex
por: Riehle, Alexa, et al.
Publicado: (2018) -
State Space Model with hidden variables for reconstruction of gene regulatory networks
por: Wu, Xi, et al.
Publicado: (2011) -
VarID2 quantifies gene expression noise dynamics and unveils functional heterogeneity of ageing hematopoietic stem cells
por: Rosales-Alvarez, Reyna Edith, et al.
Publicado: (2023) -
Decomposition of Gene Expression State Space Trajectories
por: Mar, Jessica C., et al.
Publicado: (2009) -
Mammalian gene expression variability is explained by underlying cell state
por: Foreman, Robert, et al.
Publicado: (2020)