Cargando…

Ultrafast relaxation of photoexcited superfluid He nanodroplets

The relaxation of photoexcited nanosystems is a fundamental process of light–matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouple...

Descripción completa

Detalles Bibliográficos
Autores principales: Mudrich, M., LaForge, A. C., Ciavardini, A., O’Keeffe, P., Callegari, C., Coreno, M., Demidovich, A., Devetta, M., Fraia, M. Di, Drabbels, M., Finetti, P., Gessner, O., Grazioli, C., Hernando, A., Neumark, D. M., Ovcharenko, Y., Piseri, P., Plekan, O., Prince, K. C., Richter, R., Ziemkiewicz, M. P., Möller, T., Eloranta, J., Pi, M., Barranco, M., Stienkemeier, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949273/
https://www.ncbi.nlm.nih.gov/pubmed/31913265
http://dx.doi.org/10.1038/s41467-019-13681-6
Descripción
Sumario:The relaxation of photoexcited nanosystems is a fundamental process of light–matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He[Formula: see text] ) within 1 ps. Subsequently, the bubble collapses and releases metastable He[Formula: see text] at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.