Cargando…

Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train...

Descripción completa

Detalles Bibliográficos
Autores principales: Varadarajan, Avinash V., Bavishi, Pinal, Ruamviboonsuk, Paisan, Chotcomwongse, Peranut, Venugopalan, Subhashini, Narayanaswamy, Arunachalam, Cuadros, Jorge, Kanai, Kuniyoshi, Bresnick, George, Tadarati, Mongkol, Silpa-archa, Sukhum, Limwattanayingyong, Jirawut, Nganthavee, Variya, Ledsam, Joseph R., Keane, Pearse A., Corrado, Greg S., Peng, Lily, Webster, Dale R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949287/
https://www.ncbi.nlm.nih.gov/pubmed/31913272
http://dx.doi.org/10.1038/s41467-019-13922-8
Descripción
Sumario:Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train a deep learning model to predict ci-DME from fundus photographs, with an ROC–AUC of 0.89 (95% CI: 0.87–0.91), corresponding to 85% sensitivity at 80% specificity. In comparison, retinal specialists have similar sensitivities (82–85%), but only half the specificity (45–50%, p < 0.001). Our model can also detect the presence of intraretinal fluid (AUC: 0.81; 95% CI: 0.81–0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85–0.91). Using deep learning to make predictions via simple 2D images without sophisticated 3D-imaging equipment and with better than specialist performance, has broad relevance to many other applications in medical imaging.