Cargando…
Ultra-thin van der Waals crystals as semiconductor quantum wells
Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949292/ https://www.ncbi.nlm.nih.gov/pubmed/31913279 http://dx.doi.org/10.1038/s41467-019-13893-w |
_version_ | 1783485893581996032 |
---|---|
author | Zultak, Johanna Magorrian, Samuel J. Koperski, Maciej Garner, Alistair Hamer, Matthew J. Tóvári, Endre Novoselov, Kostya S. Zhukov, Alexander A. Zou, Yichao Wilson, Neil R. Haigh, Sarah J. Kretinin, Andrey V. Fal’ko, Vladimir I. Gorbachev, Roman |
author_facet | Zultak, Johanna Magorrian, Samuel J. Koperski, Maciej Garner, Alistair Hamer, Matthew J. Tóvári, Endre Novoselov, Kostya S. Zhukov, Alexander A. Zou, Yichao Wilson, Neil R. Haigh, Sarah J. Kretinin, Andrey V. Fal’ko, Vladimir I. Gorbachev, Roman |
author_sort | Zultak, Johanna |
collection | PubMed |
description | Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here we apply this concept to van der Waals heterostructures using the thickness of exfoliated crystals to control the quantum well dimensions in few-layer semiconductor InSe. This approach realizes precise control over the energy of the subbands and their uniformity guarantees extremely high quality electronic transport in these systems. Using tunnelling and light emitting devices, we reveal the full subband structure by studying resonance features in the tunnelling current, photoabsorption and light emission spectra. In the future, these systems could enable development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer van der Waals materials. |
format | Online Article Text |
id | pubmed-6949292 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69492922020-01-10 Ultra-thin van der Waals crystals as semiconductor quantum wells Zultak, Johanna Magorrian, Samuel J. Koperski, Maciej Garner, Alistair Hamer, Matthew J. Tóvári, Endre Novoselov, Kostya S. Zhukov, Alexander A. Zou, Yichao Wilson, Neil R. Haigh, Sarah J. Kretinin, Andrey V. Fal’ko, Vladimir I. Gorbachev, Roman Nat Commun Article Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here we apply this concept to van der Waals heterostructures using the thickness of exfoliated crystals to control the quantum well dimensions in few-layer semiconductor InSe. This approach realizes precise control over the energy of the subbands and their uniformity guarantees extremely high quality electronic transport in these systems. Using tunnelling and light emitting devices, we reveal the full subband structure by studying resonance features in the tunnelling current, photoabsorption and light emission spectra. In the future, these systems could enable development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer van der Waals materials. Nature Publishing Group UK 2020-01-08 /pmc/articles/PMC6949292/ /pubmed/31913279 http://dx.doi.org/10.1038/s41467-019-13893-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zultak, Johanna Magorrian, Samuel J. Koperski, Maciej Garner, Alistair Hamer, Matthew J. Tóvári, Endre Novoselov, Kostya S. Zhukov, Alexander A. Zou, Yichao Wilson, Neil R. Haigh, Sarah J. Kretinin, Andrey V. Fal’ko, Vladimir I. Gorbachev, Roman Ultra-thin van der Waals crystals as semiconductor quantum wells |
title | Ultra-thin van der Waals crystals as semiconductor quantum wells |
title_full | Ultra-thin van der Waals crystals as semiconductor quantum wells |
title_fullStr | Ultra-thin van der Waals crystals as semiconductor quantum wells |
title_full_unstemmed | Ultra-thin van der Waals crystals as semiconductor quantum wells |
title_short | Ultra-thin van der Waals crystals as semiconductor quantum wells |
title_sort | ultra-thin van der waals crystals as semiconductor quantum wells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949292/ https://www.ncbi.nlm.nih.gov/pubmed/31913279 http://dx.doi.org/10.1038/s41467-019-13893-w |
work_keys_str_mv | AT zultakjohanna ultrathinvanderwaalscrystalsassemiconductorquantumwells AT magorriansamuelj ultrathinvanderwaalscrystalsassemiconductorquantumwells AT koperskimaciej ultrathinvanderwaalscrystalsassemiconductorquantumwells AT garneralistair ultrathinvanderwaalscrystalsassemiconductorquantumwells AT hamermatthewj ultrathinvanderwaalscrystalsassemiconductorquantumwells AT tovariendre ultrathinvanderwaalscrystalsassemiconductorquantumwells AT novoselovkostyas ultrathinvanderwaalscrystalsassemiconductorquantumwells AT zhukovalexandera ultrathinvanderwaalscrystalsassemiconductorquantumwells AT zouyichao ultrathinvanderwaalscrystalsassemiconductorquantumwells AT wilsonneilr ultrathinvanderwaalscrystalsassemiconductorquantumwells AT haighsarahj ultrathinvanderwaalscrystalsassemiconductorquantumwells AT kretininandreyv ultrathinvanderwaalscrystalsassemiconductorquantumwells AT falkovladimiri ultrathinvanderwaalscrystalsassemiconductorquantumwells AT gorbachevroman ultrathinvanderwaalscrystalsassemiconductorquantumwells |