Cargando…

Ultra-thin van der Waals crystals as semiconductor quantum wells

Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Zultak, Johanna, Magorrian, Samuel J., Koperski, Maciej, Garner, Alistair, Hamer, Matthew J., Tóvári, Endre, Novoselov, Kostya S., Zhukov, Alexander A., Zou, Yichao, Wilson, Neil R., Haigh, Sarah J., Kretinin, Andrey V., Fal’ko, Vladimir I., Gorbachev, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949292/
https://www.ncbi.nlm.nih.gov/pubmed/31913279
http://dx.doi.org/10.1038/s41467-019-13893-w
_version_ 1783485893581996032
author Zultak, Johanna
Magorrian, Samuel J.
Koperski, Maciej
Garner, Alistair
Hamer, Matthew J.
Tóvári, Endre
Novoselov, Kostya S.
Zhukov, Alexander A.
Zou, Yichao
Wilson, Neil R.
Haigh, Sarah J.
Kretinin, Andrey V.
Fal’ko, Vladimir I.
Gorbachev, Roman
author_facet Zultak, Johanna
Magorrian, Samuel J.
Koperski, Maciej
Garner, Alistair
Hamer, Matthew J.
Tóvári, Endre
Novoselov, Kostya S.
Zhukov, Alexander A.
Zou, Yichao
Wilson, Neil R.
Haigh, Sarah J.
Kretinin, Andrey V.
Fal’ko, Vladimir I.
Gorbachev, Roman
author_sort Zultak, Johanna
collection PubMed
description Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here we apply this concept to van der Waals heterostructures using the thickness of exfoliated crystals to control the quantum well dimensions in few-layer semiconductor InSe. This approach realizes precise control over the energy of the subbands and their uniformity guarantees extremely high quality electronic transport in these systems. Using tunnelling and light emitting devices, we reveal the full subband structure by studying resonance features in the tunnelling current, photoabsorption and light emission spectra. In the future, these systems could enable development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer van der Waals materials.
format Online
Article
Text
id pubmed-6949292
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69492922020-01-10 Ultra-thin van der Waals crystals as semiconductor quantum wells Zultak, Johanna Magorrian, Samuel J. Koperski, Maciej Garner, Alistair Hamer, Matthew J. Tóvári, Endre Novoselov, Kostya S. Zhukov, Alexander A. Zou, Yichao Wilson, Neil R. Haigh, Sarah J. Kretinin, Andrey V. Fal’ko, Vladimir I. Gorbachev, Roman Nat Commun Article Control over the quantization of electrons in quantum wells is at the heart of the functioning of modern advanced electronics; high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. However, this avenue has not been explored in the case of 2D materials. Here we apply this concept to van der Waals heterostructures using the thickness of exfoliated crystals to control the quantum well dimensions in few-layer semiconductor InSe. This approach realizes precise control over the energy of the subbands and their uniformity guarantees extremely high quality electronic transport in these systems. Using tunnelling and light emitting devices, we reveal the full subband structure by studying resonance features in the tunnelling current, photoabsorption and light emission spectra. In the future, these systems could enable development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer van der Waals materials. Nature Publishing Group UK 2020-01-08 /pmc/articles/PMC6949292/ /pubmed/31913279 http://dx.doi.org/10.1038/s41467-019-13893-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zultak, Johanna
Magorrian, Samuel J.
Koperski, Maciej
Garner, Alistair
Hamer, Matthew J.
Tóvári, Endre
Novoselov, Kostya S.
Zhukov, Alexander A.
Zou, Yichao
Wilson, Neil R.
Haigh, Sarah J.
Kretinin, Andrey V.
Fal’ko, Vladimir I.
Gorbachev, Roman
Ultra-thin van der Waals crystals as semiconductor quantum wells
title Ultra-thin van der Waals crystals as semiconductor quantum wells
title_full Ultra-thin van der Waals crystals as semiconductor quantum wells
title_fullStr Ultra-thin van der Waals crystals as semiconductor quantum wells
title_full_unstemmed Ultra-thin van der Waals crystals as semiconductor quantum wells
title_short Ultra-thin van der Waals crystals as semiconductor quantum wells
title_sort ultra-thin van der waals crystals as semiconductor quantum wells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949292/
https://www.ncbi.nlm.nih.gov/pubmed/31913279
http://dx.doi.org/10.1038/s41467-019-13893-w
work_keys_str_mv AT zultakjohanna ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT magorriansamuelj ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT koperskimaciej ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT garneralistair ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT hamermatthewj ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT tovariendre ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT novoselovkostyas ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT zhukovalexandera ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT zouyichao ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT wilsonneilr ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT haighsarahj ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT kretininandreyv ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT falkovladimiri ultrathinvanderwaalscrystalsassemiconductorquantumwells
AT gorbachevroman ultrathinvanderwaalscrystalsassemiconductorquantumwells