Cargando…
Dopamine transients do not act as model-free prediction errors during associative learning
Dopamine neurons are proposed to signal the reward prediction error in model-free reinforcement learning algorithms. This term represents the unpredicted or ‘excess’ value of the rewarding event, value that is then added to the intrinsic value of any antecedent cues, contexts or events. To support t...
Autores principales: | Sharpe, Melissa J., Batchelor, Hannah M., Mueller, Lauren E., Yun Chang, Chun, Maes, Etienne J. P., Niv, Yael, Schoenbaum, Geoffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949299/ https://www.ncbi.nlm.nih.gov/pubmed/31913274 http://dx.doi.org/10.1038/s41467-019-13953-1 |
Ejemplares similares
-
Dopamine transients are sufficient and necessary for acquisition of model-based associations
por: Sharpe, Melissa J, et al.
Publicado: (2017) -
Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors
por: Maes, Etienne JP, et al.
Publicado: (2020) -
The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning
por: Nasser, Helen M., et al.
Publicado: (2017) -
Evaluation of the hypothesis that phasic dopamine constitutes a cached-value signal
por: Sharpe, Melissa J., et al.
Publicado: (2017) -
Preconditioned cues have no value
por: Sharpe, Melissa J, et al.
Publicado: (2017)