Cargando…

A microsurgical robot research platform for robot-assisted microsurgery research and training

PURPOSE: Ocular surgery, ear, nose and throat surgery and neurosurgery are typical types of microsurgery. A versatile training platform can assist microsurgical skills development and accelerate the uptake of robot-assisted microsurgery (RAMS). However, the currently available platforms are mainly d...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dandan, Chen, Junhong, Li, Wei, Bautista Salinas, Daniel, Yang, Guang-Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949326/
https://www.ncbi.nlm.nih.gov/pubmed/31605352
http://dx.doi.org/10.1007/s11548-019-02074-1
Descripción
Sumario:PURPOSE: Ocular surgery, ear, nose and throat surgery and neurosurgery are typical types of microsurgery. A versatile training platform can assist microsurgical skills development and accelerate the uptake of robot-assisted microsurgery (RAMS). However, the currently available platforms are mainly designed for macro-scale minimally invasive surgery. There is a need to develop a dedicated microsurgical robot research platform for both research and clinical training. METHODS: A microsurgical robot research platform (MRRP) is introduced in this paper. The hardware system includes a slave robot with bimanual manipulators, two master controllers and a vision system. It is flexible to support multiple microsurgical tools. The software architecture is developed based on the robot operating system, which is extensible at high-level control. The selection of master–slave mapping strategy was explored, while comparisons were made between different interfaces. RESULTS: Experimental verification was conducted based on two microsurgical tasks for training evaluation, i.e. trajectory following and targeting. User study results indicated that the proposed hybrid interface is more effective than the traditional approach in terms of frequency of clutching, task completion time and ease of control. CONCLUSION: Results indicated that the MRRP can be utilized for microsurgical skills training, since motion kinematic data and vision data can provide objective means of verification and scoring. The proposed system can further be used for verifying high-level control algorithms and task automation for RAMS research.