Cargando…

The Acute and Chronic Cognitive and Cerebral Blood-Flow Effects of Nepalese Pepper (Zanthoxylum armatum DC.) Extract—A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Humans

Background: Zanthoxylum armatum DC. (ZA) is a traditional Asian culinary spice and medicinal compound, which is rich in monoterpenes and hydroxy α-sanshool. Mechanistic interactions with the monoamine, cholinergic and cannabinoid neurotransmission systems, as well as transient receptor potential (TR...

Descripción completa

Detalles Bibliográficos
Autores principales: Kennedy, David, Wightman, Emma, Khan, Julie, Grothe, Torsten, Jackson, Philippa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950039/
https://www.ncbi.nlm.nih.gov/pubmed/31835620
http://dx.doi.org/10.3390/nu11123022
Descripción
Sumario:Background: Zanthoxylum armatum DC. (ZA) is a traditional Asian culinary spice and medicinal compound, which is rich in monoterpenes and hydroxy α-sanshool. Mechanistic interactions with the monoamine, cholinergic and cannabinoid neurotransmission systems, as well as transient receptor potential (TRP) and potassium ion channels, may predispose ZA to modulate human brain function. Objectives: To investigate the effects of a single dose and 56-days supplementation with a lipid extract of ZA on cognitive function, mood and cerebral blood-flow (CBF) parameters in the pre-frontal cortex during cognitive task performance. Design: Double-blind, randomized, parallel groups study with N = 82 healthy males and females between the ages of 30 and 55 years. Assessments were undertaken pre-dose and at 1, 3 and 5 h post-dose on the first (Day 1) and last (Day 56) days of supplementation. Results: A single dose of ZA (Day 1) resulted in acute improvements on a ‘Speed of Attention’ factor and the Rapid Visual Information Processing (RVIP) task, in comparison to placebo. However, following ZA participants were less accurate on the name-to-face recall task. After 56 days of ZA consumption (Day 56), speed was enhanced on a global ‘Speed of Performance’ measure, comprising data from all of the timed tasks in the computerized battery. Participants also completed more correct Serial 3s Subtractions at the 3 h assessment and were less mentally fatigued throughout the day than participants consuming placebo. These effects were complemented on both Day 1 and Day 56 by modulation of CBF parameters, as assessed by Near Infrared Spectroscopy (NIRS). The primary finding here was a reduced hemodynamic response during the RVIP task. Conclusion: ZA improves aspects of cognitive performance, in particular the speed of performing tasks, in healthy humans and results in concomitant reductions in hemodynamic responses in the frontal cortex during task performance. The findings suggest an increase in neural efficiency following ZA.