Cargando…
Global and Geographically and Temporally Weighted Regression Models for Modeling PM(2.5) in Heilongjiang, China from 2015 to 2018
Objective: This study investigated the relationships between PM(2.5) and 5 criteria air pollutants (SO(2), NO(2), PM(10), CO, and O(3)) in Heilongjiang, China, from 2015 to 2018 using global and geographically and temporally weighted regression models. Methods: Ordinary least squares regression (OLS...
Autores principales: | Wei, Qingbin, Zhang, Lianjun, Duan, Wenbiao, Zhen, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950195/ https://www.ncbi.nlm.nih.gov/pubmed/31847317 http://dx.doi.org/10.3390/ijerph16245107 |
Ejemplares similares
-
Spatiotemporal Heterogeneity and the Key Influencing Factors of PM(2.5) and PM(10) in Heilongjiang, China from 2014 to 2018
por: Fu, Longhui, et al.
Publicado: (2022) -
PM(2.5) concentration assessment based on geographical and temporal weighted regression model and MCD19A2 from 2015 to 2020 in Xinjiang, China
por: Quan, Weilin, et al.
Publicado: (2023) -
Global and Geographically Weighted Quantile Regression for Modeling the Incident Rate of Children’s Lead Poisoning in Syracuse, NY, USA
por: Zhen, Zhen, et al.
Publicado: (2018) -
Geographically weighted temporally correlated logistic regression model
por: Liu, Yang, et al.
Publicado: (2018) -
Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model
por: Cao, Qilong, et al.
Publicado: (2018)