Cargando…
Dietary Omega-3 Fatty Acid Dampens Allergic Rhinitis via Eosinophilic Production of the Anti-Allergic Lipid Mediator 15-Hydroxyeicosapentaenoic Acid in Mice
The metabolism and generation of bioactive lipid mediators are key events in the exertion of the beneficial effects of dietary omega-3 fatty acids in the regulation of allergic inflammation. Here, we found that dietary linseed oil, which contains high amounts of alpha-linolenic acid (ALA) dampened a...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950470/ https://www.ncbi.nlm.nih.gov/pubmed/31766714 http://dx.doi.org/10.3390/nu11122868 |
Sumario: | The metabolism and generation of bioactive lipid mediators are key events in the exertion of the beneficial effects of dietary omega-3 fatty acids in the regulation of allergic inflammation. Here, we found that dietary linseed oil, which contains high amounts of alpha-linolenic acid (ALA) dampened allergic rhinitis through eosinophilic production of 15-hydroxyeicosapentaenoic acid (15-HEPE), a metabolite of eicosapentaenoic acid (EPA). Lipidomic analysis revealed that 15-HEPE was particularly accumulated in the nasal passage of linseed oil-fed mice after the development of allergic rhinitis with the increasing number of eosinophils. Indeed, the conversion of EPA to 15-HEPE was mediated by the 15-lipoxygenase activity of eosinophils. Intranasal injection of 15-HEPE dampened allergic symptoms by inhibiting mast cell degranulation, which was mediated by the action of peroxisome proliferator-activated receptor gamma. These findings identify 15-HEPE as a novel EPA-derived, and eosinophil-dependent anti-allergic metabolite, and provide a preventive and therapeutic strategy against allergic rhinitis. |
---|