Cargando…
Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species
BACKGROUND: The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, onl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950789/ https://www.ncbi.nlm.nih.gov/pubmed/31914924 http://dx.doi.org/10.1186/s12864-019-6410-x |
_version_ | 1783486152407252992 |
---|---|
author | Strepis, Nikolaos Naranjo, Henry D. Meier-Kolthoff, Jan Göker, Markus Shapiro, Nicole Kyrpides, Nikos Klenk, Hans-Peter Schaap, Peter J. Stams, Alfons J. M. Sousa, Diana Z. |
author_facet | Strepis, Nikolaos Naranjo, Henry D. Meier-Kolthoff, Jan Göker, Markus Shapiro, Nicole Kyrpides, Nikos Klenk, Hans-Peter Schaap, Peter J. Stams, Alfons J. M. Sousa, Diana Z. |
author_sort | Strepis, Nikolaos |
collection | PubMed |
description | BACKGROUND: The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly 1,3-propanediol. Comparative genomic analysis of Trichococcus species provides the opportunity to further explore the physiological potential and uncover novel properties of this genus. RESULTS: In this study, a genotype-phenotype comparative analysis of Trichococcus strains was performed. The genome of Trichococcus strain ES5 was sequenced and included in the comparison with the other nine type strains. Genes encoding functions related to e.g. the utilization of different carbon sources (glycerol, arabinan and alginate), antibiotic resistance, tolerance to low temperature and osmoregulation could be identified in all the sequences analysed. T. pasteurii and Trichococcus strain ES5 contain a operon with genes encoding necessary enzymes for 1,3-PDO production from glycerol. All the analysed genomes comprise genes encoding for cold shock domains, but only five of the Trichococcus species can grow at 0 °C. Protein domains associated to osmoregulation mechanisms are encoded in the genomes of all Trichococcus species, except in T. palustris, which had a lower resistance to salinity than the other nine studied Trichococcus strains. CONCLUSIONS: Genome analysis and comparison of ten Trichococcus strains allowed the identification of physiological traits related to substrate utilization and environmental stress resistance (e.g. to cold and salinity). Some substrates were used by single species, e.g. alginate by T. collinsii and arabinan by T. alkaliphilus. Strain ES5 may represent a subspecies of Trichococcus flocculiformis and contrary to the type strain (DSM 2094(T)), is able to grow on glycerol with the production of 1,3-propanediol. |
format | Online Article Text |
id | pubmed-6950789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69507892020-01-09 Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species Strepis, Nikolaos Naranjo, Henry D. Meier-Kolthoff, Jan Göker, Markus Shapiro, Nicole Kyrpides, Nikos Klenk, Hans-Peter Schaap, Peter J. Stams, Alfons J. M. Sousa, Diana Z. BMC Genomics Research Article BACKGROUND: The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly 1,3-propanediol. Comparative genomic analysis of Trichococcus species provides the opportunity to further explore the physiological potential and uncover novel properties of this genus. RESULTS: In this study, a genotype-phenotype comparative analysis of Trichococcus strains was performed. The genome of Trichococcus strain ES5 was sequenced and included in the comparison with the other nine type strains. Genes encoding functions related to e.g. the utilization of different carbon sources (glycerol, arabinan and alginate), antibiotic resistance, tolerance to low temperature and osmoregulation could be identified in all the sequences analysed. T. pasteurii and Trichococcus strain ES5 contain a operon with genes encoding necessary enzymes for 1,3-PDO production from glycerol. All the analysed genomes comprise genes encoding for cold shock domains, but only five of the Trichococcus species can grow at 0 °C. Protein domains associated to osmoregulation mechanisms are encoded in the genomes of all Trichococcus species, except in T. palustris, which had a lower resistance to salinity than the other nine studied Trichococcus strains. CONCLUSIONS: Genome analysis and comparison of ten Trichococcus strains allowed the identification of physiological traits related to substrate utilization and environmental stress resistance (e.g. to cold and salinity). Some substrates were used by single species, e.g. alginate by T. collinsii and arabinan by T. alkaliphilus. Strain ES5 may represent a subspecies of Trichococcus flocculiformis and contrary to the type strain (DSM 2094(T)), is able to grow on glycerol with the production of 1,3-propanediol. BioMed Central 2020-01-08 /pmc/articles/PMC6950789/ /pubmed/31914924 http://dx.doi.org/10.1186/s12864-019-6410-x Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Strepis, Nikolaos Naranjo, Henry D. Meier-Kolthoff, Jan Göker, Markus Shapiro, Nicole Kyrpides, Nikos Klenk, Hans-Peter Schaap, Peter J. Stams, Alfons J. M. Sousa, Diana Z. Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species |
title | Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species |
title_full | Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species |
title_fullStr | Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species |
title_full_unstemmed | Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species |
title_short | Genome-guided analysis allows the identification of novel physiological traits in Trichococcus species |
title_sort | genome-guided analysis allows the identification of novel physiological traits in trichococcus species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950789/ https://www.ncbi.nlm.nih.gov/pubmed/31914924 http://dx.doi.org/10.1186/s12864-019-6410-x |
work_keys_str_mv | AT strepisnikolaos genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT naranjohenryd genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT meierkolthoffjan genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT gokermarkus genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT shapironicole genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT kyrpidesnikos genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT klenkhanspeter genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT schaappeterj genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT stamsalfonsjm genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies AT sousadianaz genomeguidedanalysisallowstheidentificationofnovelphysiologicaltraitsintrichococcusspecies |