Cargando…
WET: Word embedding-topic distribution vectors for MOOC video lectures dataset
In this article, we present a dataset containing word embeddings and document topic distribution vectors generated from MOOCs video lecture transcripts. Transcripts of 12,032 video lectures from 200 courses were collected from Coursera learning platform. This large corpus of transcripts was used as...
Autores principales: | Kastrati, Zenun, Kurti, Arianit, Imran, Ali Shariq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950834/ https://www.ncbi.nlm.nih.gov/pubmed/31921958 http://dx.doi.org/10.1016/j.dib.2019.105090 |
Ejemplares similares
-
Human-annotated dataset for social media sentiment analysis for Albanian language
por: Kadriu, Fatbardh, et al.
Publicado: (2022) -
Going digital as a result of COVID-19: Insights from students’ and teachers’ impressions in a Swedish university
por: Dalipi, Fisnik, et al.
Publicado: (2022) -
SentiUrdu-1M: A large-scale tweet dataset for Urdu text sentiment analysis using weakly supervised learning
por: Ghafoor, Abdul, et al.
Publicado: (2023) -
Towards Smart Home Automation Using IoT-Enabled Edge-Computing Paradigm
por: Yar, Hikmat, et al.
Publicado: (2021) -
How much vocabulary is needed for comprehension of video lectures in MOOCs: A corpus-based study
por: Xodabande, Ismail, et al.
Publicado: (2022)