Cargando…
Predicting diabetes clinical outcomes using longitudinal risk factor trajectories
BACKGROUND: The ubiquity of electronic health records (EHR) offers an opportunity to observe trajectories of laboratory results and vital signs over long periods of time. This study assessed the value of risk factor trajectories available in the electronic health record to predict incident type 2 di...
Autores principales: | Simon, Gyorgy J., Peterson, Kevin A., Castro, M. Regina, Steinbach, Michael S., Kumar, Vipin, Caraballo, Pedro J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950847/ https://www.ncbi.nlm.nih.gov/pubmed/31914992 http://dx.doi.org/10.1186/s12911-019-1009-3 |
Ejemplares similares
-
Association of BMI, comorbidities and all-cause mortality by using a baseline mortality risk model
por: Li, Jia, et al.
Publicado: (2021) -
Evaluating the Impact of Data Representation on EHR-Based Analytic Tasks
por: Oh, Wonsuk, et al.
Publicado: (2019) -
Multi-Task Learning to Identify Outcome-Specific Risk Factors that Distinguish Individual Micro and Macrovascular Complications of Type 2 Diabetes
por: Kim, Era, et al.
Publicado: (2018) -
A novel method for causal structure discovery from EHR data and its application to type-2 diabetes mellitus
por: Shen, Xinpeng, et al.
Publicado: (2021) -
Development and Validation of a Risk Stratification Model Using Disease Severity Hierarchy for Mortality or Major Cardiovascular Event
por: Ngufor, Che, et al.
Publicado: (2020)