Cargando…
Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction
Neural Message Passing for graphs is a promising and relatively recent approach for applying Machine Learning to networked data. As molecules can be described intrinsically as a molecular graph, it makes sense to apply these techniques to improve molecular property prediction in the field of cheminf...
Autores principales: | Withnall, M., Lindelöf, E., Engkvist, O., Chen, H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951016/ https://www.ncbi.nlm.nih.gov/pubmed/33430988 http://dx.doi.org/10.1186/s13321-019-0407-y |
Ejemplares similares
-
A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility
por: Tang, Bowen, et al.
Publicado: (2020) -
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
por: Altarelli, Fabrizio, et al.
Publicado: (2015) -
Flexible Dual-Branched Message-Passing Neural Network
for a Molecular Property Prediction
por: Jo, Jeonghee, et al.
Publicado: (2022) -
Efficiently passing messages in distributed spiking neural network simulation
por: Thibeault, Corey M., et al.
Publicado: (2013) -
Knowledge-Embedded Message-Passing Neural Networks:
Improving Molecular Property Prediction with Human Knowledge
por: Hasebe, Tatsuya
Publicado: (2021)