Cargando…
Physiological effects of high-flow nasal cannula therapy in preterm infants
OBJECTIVE: High-flow nasal cannula (HFNC) therapy is increasingly used in preterm infants despite a paucity of physiological studies. We aimed to investigate the effects of HFNC on respiratory physiology. STUDY DESIGN: A prospective randomised crossover study was performed enrolling clinically stabl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951230/ https://www.ncbi.nlm.nih.gov/pubmed/31123057 http://dx.doi.org/10.1136/archdischild-2018-316773 |
Sumario: | OBJECTIVE: High-flow nasal cannula (HFNC) therapy is increasingly used in preterm infants despite a paucity of physiological studies. We aimed to investigate the effects of HFNC on respiratory physiology. STUDY DESIGN: A prospective randomised crossover study was performed enrolling clinically stable preterm infants receiving either HFNC or nasal continuous positive airway pressure (nCPAP). Infants in three current weight groups were studied: <1000 g, 1000–1500 g and >1500 g. Infants were randomised to either first receive HFNC flows 8–2 L/min and then nCPAP 6 cm H(2)O or nCPAP first and then HFNC flows 8–2 L/min. Nasopharyngeal end-expiratory airway pressure (pEEP), tidal volume, dead space washout by nasopharyngeal end-expiratory CO(2) (pEECO(2)), oxygen saturation and vital signs were measured. RESULTS: A total of 44 preterm infants, birth weights 500–1900 g, were studied. Increasing flows from 2 to 8 L/min significantly increased pEEP (mean 2.3–6.1 cm H(2)O) and reduced pEECO(2) (mean 2.3%–0.9%). Tidal volume and transcutaneous CO(2) were unchanged. Significant differences were seen between pEEP generated in open and closed mouth states across all HFNC flows (difference 0.6–2.3 cm H(2)O). Infants weighing <1000 g received higher pEEP at the same HFNC flow than infants weighing >1000 g. Variability of pEEP generated at HFNC flows of 6–8 L/min was greater than nCPAP (2.4–13.5 vs 3.5–9.9 cm H(2)O). CONCLUSIONS: HFNC therapy produces clinically significant pEEP with large variability at higher flow rates. Highest pressures were observed in infants weighing <1000 g. Flow, weight and mouth position are all important determinants of pressures generated. Reductions in pEECO(2) support HFNC’s role in dead space washout. |
---|