Cargando…
Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery
The ECG remains the most widely used diagnostic test for characterization of cardiac structure and electrical activity. We hypothesized that parallel advances in computing power, machine learning algorithms, and availability of large-scale data could substantially expand the clinical inferences deri...
Autores principales: | Tison, Geoffrey H., Zhang, Jeffrey, Delling, Francesca N., Deo, Rahul C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951431/ https://www.ncbi.nlm.nih.gov/pubmed/31525078 http://dx.doi.org/10.1161/CIRCOUTCOMES.118.005289 |
Ejemplares similares
-
Fully Automated Echocardiogram Interpretation in Clinical Practice: Feasibility and Diagnostic Accuracy
por: Zhang, Jeffrey, et al.
Publicado: (2018) -
Automated Atrial Fibrillation Detection with ECG
por: Wei, Ting-Ruen, et al.
Publicado: (2022) -
The hidden waves in the ECG uncovered revealing a sound automated interpretation method
por: Rueda, Cristina, et al.
Publicado: (2021) -
CathAI: fully automated coronary angiography interpretation and stenosis estimation
por: Avram, Robert, et al.
Publicado: (2023) -
Deep learning augmented ECG analysis to identify biomarker-defined myocardial injury
por: Chaudhari, Gunvant R., et al.
Publicado: (2023)