Cargando…
On the Weak Convergence of the Extragradient Method for Solving Pseudo-Monotone Variational Inequalities
In infinite-dimensional Hilbert spaces, we prove that the iterative sequence generated by the extragradient method for solving pseudo-monotone variational inequalities converges weakly to a solution. A class of pseudo-monotone variational inequalities is considered to illustrate the convergent behav...
Autor principal: | Vuong, Phan Tu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951821/ https://www.ncbi.nlm.nih.gov/pubmed/31983774 http://dx.doi.org/10.1007/s10957-017-1214-0 |
Ejemplares similares
-
A modified subgradient extragradient method for solving monotone variational inequalities
por: He, Songnian, et al.
Publicado: (2017) -
Extragradient subgradient methods for solving bilevel equilibrium problems
por: Yuying, Tadchai, et al.
Publicado: (2018) -
Stochastic Mirror Descent Dynamics and Their Convergence in Monotone Variational Inequalities
por: Mertikopoulos, Panayotis, et al.
Publicado: (2018) -
Self-adaptive iterative method for solving boundedly Lipschitz continuous and strongly monotone variational inequalities
por: He, Songnian, et al.
Publicado: (2018) -
Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem
por: Zhao, Ying, et al.
Publicado: (2017)