Cargando…
Predictive modeling in urgent care: a comparative study of machine learning approaches
OBJECTIVE: The growing availability of rich clinical data such as patients’ electronic health records provide great opportunities to address a broad range of real-world questions in medicine. At the same time, artificial intelligence and machine learning (ML)-based approaches have shown great premis...
Autores principales: | Tang, Fengyi, Xiao, Cao, Wang, Fei, Zhou, Jiayu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951928/ https://www.ncbi.nlm.nih.gov/pubmed/31984321 http://dx.doi.org/10.1093/jamiaopen/ooy011 |
Ejemplares similares
-
TB-ML—a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
por: Libiseller-Egger, Julian, et al.
Publicado: (2023) -
An approach to predicting patient experience through machine learning and social network analysis
por: Bari, Vitej, et al.
Publicado: (2020) -
Comparison and interpretability of machine learning models to predict severity of chest injury
por: Kulshrestha, Sujay, et al.
Publicado: (2021) -
Graphics help patients distinguish between urgent and non-urgent deviations in laboratory test results
por: Zikmund-Fisher, Brian J, et al.
Publicado: (2017) -
Development of a novel machine learning model to predict presence of nonalcoholic steatohepatitis
por: Docherty, Matt, et al.
Publicado: (2021)