Cargando…
Inferring new relations between medical entities using literature curated term co-occurrences
OBJECTIVES: Identifying new relations between medical entities, such as drugs, diseases, and side effects, is typically a resource-intensive task, involving experimentation and clinical trials. The increased availability of related data and curated knowledge enables a computational approach to this...
Autores principales: | Spiro, Adam, Fernández García, Jonatan, Yanover, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951958/ https://www.ncbi.nlm.nih.gov/pubmed/31984370 http://dx.doi.org/10.1093/jamiaopen/ooz022 |
Ejemplares similares
-
Canto: an online tool for community literature curation
por: Rutherford, Kim M., et al.
Publicado: (2014) -
Tracking and curating putative SARS-CoV-2 recombinants with RIVET
por: Smith, Kyle, et al.
Publicado: (2023) -
Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis
por: Wu, Stephen T, et al.
Publicado: (2012) -
Cross-lingual Unified Medical Language System entity linking in online health communities
por: Bitton, Yonatan, et al.
Publicado: (2020) -
CoMutDB: the landscape of somatic mutation co-occurrence in cancers
por: Jiang, Limin, et al.
Publicado: (2022)