Cargando…
Patient similarity by joint matrix trifactorization to identify subgroups in acute myeloid leukemia
OBJECTIVE: Computing patients’ similarity is of great interest in precision oncology since it supports clustering and subgroup identification, eventually leading to tailored therapies. The availability of large amounts of biomedical data, characterized by large feature sets and sparse content, motiv...
Autores principales: | Vitali, F, Marini, S, Pala, D, Demartini, A, Montoli, S, Zambelli, A, Bellazzi, R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951984/ https://www.ncbi.nlm.nih.gov/pubmed/31984320 http://dx.doi.org/10.1093/jamiaopen/ooy008 |
Ejemplares similares
-
Deep significance clustering: a novel approach for identifying risk-stratified and predictive patient subgroups
por: Huang, Yufang, et al.
Publicado: (2021) -
A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer
por: Vitali, Francesca, et al.
Publicado: (2016) -
Correction: A Network-Based Data Integration Approach to Support Drug Repurposing and Multi-Target Therapies in Triple Negative Breast Cancer
por: Vitali, Francesca, et al.
Publicado: (2017) -
SGI: automatic clinical subgroup identification in omics datasets
por: Buyukozkan, Mustafa, et al.
Publicado: (2021) -
Stochastic model search with binary outcomes for genome-wide association studies
por: Russu, Alberto, et al.
Publicado: (2012)