Cargando…

Exploring the impact of terminology differences in blood and organ donor decision making

Because the global shortage of blood and organ donors across all medical markets is a serious concern for health care provision, we aim in this study to better understand decisions (not) to participate in these two forms of medical donation, which can save or prolong another’s life. Using unique res...

Descripción completa

Detalles Bibliográficos
Autores principales: Whyte, Stephen, Chan, Ho Fai, Hammarberg, Karin, Torgler, Benno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952186/
https://www.ncbi.nlm.nih.gov/pubmed/31917815
http://dx.doi.org/10.1371/journal.pone.0227536
Descripción
Sumario:Because the global shortage of blood and organ donors across all medical markets is a serious concern for health care provision, we aim in this study to better understand decisions (not) to participate in these two forms of medical donation, which can save or prolong another’s life. Using unique responses from over 1,000 online survey respondents, we compare the reasons given for the donation decision given by blood and/or registered organ donors versus non-donors. To do so, we categorize responses based on five dimensions of language choice: egocentric (referring to self), social, moral, positively emotional, and negatively emotional. Our results reveal statistically significant differences between blood donors and non-donors in the use of all five categories. With respect to organ donation, we find statistically significant differences between donors and non-donors in the use of social, moral and positive emotional terms but not in the use of egocentric or negatively emotional justifications. Such results suggest that the ‘gift of life’ terminology used universally to market to potential blood and organ donors may only be relevant in the blood donation market and unlikely to incentivize or change organ donation behaviour.