Cargando…

Marker-less real-time intra-operative camera and hand-eye calibration procedure for surgical augmented reality

Accurate medical Augmented Reality (AR) rendering requires two calibrations, a camera intrinsic matrix estimation and a hand-eye transformation. We present a unified, practical, marker-less, real-time system to estimate both these transformations during surgery. For camera calibration we perform cal...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalia, Megha, Mathur, Prateek, Navab, Nassir, Salcudean, Septimiu E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Institution of Engineering and Technology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952262/
https://www.ncbi.nlm.nih.gov/pubmed/32038867
http://dx.doi.org/10.1049/htl.2019.0094
Descripción
Sumario:Accurate medical Augmented Reality (AR) rendering requires two calibrations, a camera intrinsic matrix estimation and a hand-eye transformation. We present a unified, practical, marker-less, real-time system to estimate both these transformations during surgery. For camera calibration we perform calibrations at multiple distances from the endoscope, pre-operatively, to parametrize the camera intrinsic matrix as a function of distance from the endoscope. Then, we retrieve the camera parameters intra-operatively by estimating the distance of the surgical site from the endoscope in less than 1 s. Unlike in prior work, our method does not require the endoscope to be taken out of the patient; for the hand-eye calibration, as opposed to conventional methods that require the identification of a marker, we make use of a rendered tool-tip in 3D. As the surgeon moves the instrument and observes the offset between the actual and the rendered tool-tip, they can select points of high visual error and manually bring the instrument tip to match the virtual rendered tool tip. To evaluate the hand-eye calibration, 5 subjects carried out the hand-eye calibration procedure on a da Vinci robot. Average Target Registration Error of approximately 7mm was achieved with just three data points.