Cargando…

Best practices for high data-rate macromolecular crystallography (HDRMX)

In macromolecular crystallography, higher flux, smaller beams, and faster detectors open the door to experiments with very large numbers of very small samples that can reveal polymorphs and dynamics but require re-engineering of approaches to the clustering of images both at synchrotrons and XFELs (...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernstein, Herbert J., Andrews, Lawrence C., Diaz, Jorge A., Jakoncic, Jean, Nguyen, Thu, Sauter, Nicholas K., Soares, Alexei S., Wei, Justin Y., Wlodek, Maciej R., Xerri, Mario A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Crystallographic Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952294/
https://www.ncbi.nlm.nih.gov/pubmed/31934601
http://dx.doi.org/10.1063/1.5128498
_version_ 1783486418216026112
author Bernstein, Herbert J.
Andrews, Lawrence C.
Diaz, Jorge A.
Jakoncic, Jean
Nguyen, Thu
Sauter, Nicholas K.
Soares, Alexei S.
Wei, Justin Y.
Wlodek, Maciej R.
Xerri, Mario A.
author_facet Bernstein, Herbert J.
Andrews, Lawrence C.
Diaz, Jorge A.
Jakoncic, Jean
Nguyen, Thu
Sauter, Nicholas K.
Soares, Alexei S.
Wei, Justin Y.
Wlodek, Maciej R.
Xerri, Mario A.
author_sort Bernstein, Herbert J.
collection PubMed
description In macromolecular crystallography, higher flux, smaller beams, and faster detectors open the door to experiments with very large numbers of very small samples that can reveal polymorphs and dynamics but require re-engineering of approaches to the clustering of images both at synchrotrons and XFELs (X-ray free electron lasers). The need for the management of orders of magnitude more images and limitations of file systems favor a transition from simple one-file-per-image systems such as CBF to image container systems such as HDF5. This further increases the load on computers and networks and requires a re-examination of the presentation of metadata. In this paper, we discuss three important components of this problem—improved approaches to the clustering of images to better support experiments on polymorphs and dynamics, recent and upcoming changes in metadata for Eiger images, and software to rapidly validate images in the revised Eiger format.
format Online
Article
Text
id pubmed-6952294
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Crystallographic Association
record_format MEDLINE/PubMed
spelling pubmed-69522942020-01-13 Best practices for high data-rate macromolecular crystallography (HDRMX) Bernstein, Herbert J. Andrews, Lawrence C. Diaz, Jorge A. Jakoncic, Jean Nguyen, Thu Sauter, Nicholas K. Soares, Alexei S. Wei, Justin Y. Wlodek, Maciej R. Xerri, Mario A. Struct Dyn ARTICLES In macromolecular crystallography, higher flux, smaller beams, and faster detectors open the door to experiments with very large numbers of very small samples that can reveal polymorphs and dynamics but require re-engineering of approaches to the clustering of images both at synchrotrons and XFELs (X-ray free electron lasers). The need for the management of orders of magnitude more images and limitations of file systems favor a transition from simple one-file-per-image systems such as CBF to image container systems such as HDF5. This further increases the load on computers and networks and requires a re-examination of the presentation of metadata. In this paper, we discuss three important components of this problem—improved approaches to the clustering of images to better support experiments on polymorphs and dynamics, recent and upcoming changes in metadata for Eiger images, and software to rapidly validate images in the revised Eiger format. American Crystallographic Association 2020-01-09 /pmc/articles/PMC6952294/ /pubmed/31934601 http://dx.doi.org/10.1063/1.5128498 Text en © 2020 Author(s). 2329-7778/2020/7(1)/014302/8 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle ARTICLES
Bernstein, Herbert J.
Andrews, Lawrence C.
Diaz, Jorge A.
Jakoncic, Jean
Nguyen, Thu
Sauter, Nicholas K.
Soares, Alexei S.
Wei, Justin Y.
Wlodek, Maciej R.
Xerri, Mario A.
Best practices for high data-rate macromolecular crystallography (HDRMX)
title Best practices for high data-rate macromolecular crystallography (HDRMX)
title_full Best practices for high data-rate macromolecular crystallography (HDRMX)
title_fullStr Best practices for high data-rate macromolecular crystallography (HDRMX)
title_full_unstemmed Best practices for high data-rate macromolecular crystallography (HDRMX)
title_short Best practices for high data-rate macromolecular crystallography (HDRMX)
title_sort best practices for high data-rate macromolecular crystallography (hdrmx)
topic ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952294/
https://www.ncbi.nlm.nih.gov/pubmed/31934601
http://dx.doi.org/10.1063/1.5128498
work_keys_str_mv AT bernsteinherbertj bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT andrewslawrencec bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT diazjorgea bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT jakoncicjean bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT nguyenthu bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT sauternicholask bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT soaresalexeis bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT weijustiny bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT wlodekmaciejr bestpracticesforhighdataratemacromolecularcrystallographyhdrmx
AT xerrimarioa bestpracticesforhighdataratemacromolecularcrystallographyhdrmx