Cargando…
High‐resolution metabolomic profiling of Alzheimer’s disease in plasma
BACKGROUND: Alzheimer’s disease (AD) is a complex neurological disorder with contributions from genetic and environmental factors. High‐resolution metabolomics (HRM) has the potential to identify novel endogenous and environmental factors involved in AD. Previous metabolomics studies have identified...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952314/ https://www.ncbi.nlm.nih.gov/pubmed/31828981 http://dx.doi.org/10.1002/acn3.50956 |
_version_ | 1783486422449127424 |
---|---|
author | Niedzwiecki, Megan M. Walker, Douglas I. Howell, Jennifer Christina Watts, Kelly D. Jones, Dean P. Miller, Gary W. Hu, William T. |
author_facet | Niedzwiecki, Megan M. Walker, Douglas I. Howell, Jennifer Christina Watts, Kelly D. Jones, Dean P. Miller, Gary W. Hu, William T. |
author_sort | Niedzwiecki, Megan M. |
collection | PubMed |
description | BACKGROUND: Alzheimer’s disease (AD) is a complex neurological disorder with contributions from genetic and environmental factors. High‐resolution metabolomics (HRM) has the potential to identify novel endogenous and environmental factors involved in AD. Previous metabolomics studies have identified circulating metabolites linked to AD, but lack of replication and inconsistent diagnostic algorithms have hindered the generalizability of these findings. Here we applied HRM to identify plasma metabolic and environmental factors associated with AD in two study samples, with cerebrospinal fluid (CSF) biomarkers of AD incorporated to achieve high diagnostic accuracy. METHODS: Liquid chromatography‐mass spectrometry (LC–MS)‐based HRM was used to identify plasma and CSF metabolites associated with AD diagnosis and CSF AD biomarkers in two studies of prevalent AD (Study 1: 43 AD cases, 45 mild cognitive impairment [MCI] cases, 41 controls; Study 2: 50 AD cases, 18 controls). AD‐associated metabolites were identified using a metabolome‐wide association study (MWAS) framework. RESULTS: An MWAS meta‐analysis identified three non‐medication AD‐associated metabolites in plasma, including elevated levels of glutamine and an unknown halogenated compound and lower levels of piperine, a dietary alkaloid. The non‐medication metabolites were correlated with CSF AD biomarkers, and glutamine and the unknown halogenated compound were also detected in CSF. Furthermore, in Study 1, the unknown compound and piperine were altered in MCI patients in the same direction as AD dementia. CONCLUSIONS: In plasma, AD was reproducibly associated with elevated levels of glutamine and a halogen‐containing compound and reduced levels of piperine. These findings provide further evidence that exposures and behavior may modify AD risks. |
format | Online Article Text |
id | pubmed-6952314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69523142020-01-10 High‐resolution metabolomic profiling of Alzheimer’s disease in plasma Niedzwiecki, Megan M. Walker, Douglas I. Howell, Jennifer Christina Watts, Kelly D. Jones, Dean P. Miller, Gary W. Hu, William T. Ann Clin Transl Neurol Research Articles BACKGROUND: Alzheimer’s disease (AD) is a complex neurological disorder with contributions from genetic and environmental factors. High‐resolution metabolomics (HRM) has the potential to identify novel endogenous and environmental factors involved in AD. Previous metabolomics studies have identified circulating metabolites linked to AD, but lack of replication and inconsistent diagnostic algorithms have hindered the generalizability of these findings. Here we applied HRM to identify plasma metabolic and environmental factors associated with AD in two study samples, with cerebrospinal fluid (CSF) biomarkers of AD incorporated to achieve high diagnostic accuracy. METHODS: Liquid chromatography‐mass spectrometry (LC–MS)‐based HRM was used to identify plasma and CSF metabolites associated with AD diagnosis and CSF AD biomarkers in two studies of prevalent AD (Study 1: 43 AD cases, 45 mild cognitive impairment [MCI] cases, 41 controls; Study 2: 50 AD cases, 18 controls). AD‐associated metabolites were identified using a metabolome‐wide association study (MWAS) framework. RESULTS: An MWAS meta‐analysis identified three non‐medication AD‐associated metabolites in plasma, including elevated levels of glutamine and an unknown halogenated compound and lower levels of piperine, a dietary alkaloid. The non‐medication metabolites were correlated with CSF AD biomarkers, and glutamine and the unknown halogenated compound were also detected in CSF. Furthermore, in Study 1, the unknown compound and piperine were altered in MCI patients in the same direction as AD dementia. CONCLUSIONS: In plasma, AD was reproducibly associated with elevated levels of glutamine and a halogen‐containing compound and reduced levels of piperine. These findings provide further evidence that exposures and behavior may modify AD risks. John Wiley and Sons Inc. 2019-12-11 /pmc/articles/PMC6952314/ /pubmed/31828981 http://dx.doi.org/10.1002/acn3.50956 Text en © 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Niedzwiecki, Megan M. Walker, Douglas I. Howell, Jennifer Christina Watts, Kelly D. Jones, Dean P. Miller, Gary W. Hu, William T. High‐resolution metabolomic profiling of Alzheimer’s disease in plasma |
title | High‐resolution metabolomic profiling of Alzheimer’s disease in plasma |
title_full | High‐resolution metabolomic profiling of Alzheimer’s disease in plasma |
title_fullStr | High‐resolution metabolomic profiling of Alzheimer’s disease in plasma |
title_full_unstemmed | High‐resolution metabolomic profiling of Alzheimer’s disease in plasma |
title_short | High‐resolution metabolomic profiling of Alzheimer’s disease in plasma |
title_sort | high‐resolution metabolomic profiling of alzheimer’s disease in plasma |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952314/ https://www.ncbi.nlm.nih.gov/pubmed/31828981 http://dx.doi.org/10.1002/acn3.50956 |
work_keys_str_mv | AT niedzwieckimeganm highresolutionmetabolomicprofilingofalzheimersdiseaseinplasma AT walkerdouglasi highresolutionmetabolomicprofilingofalzheimersdiseaseinplasma AT howelljenniferchristina highresolutionmetabolomicprofilingofalzheimersdiseaseinplasma AT wattskellyd highresolutionmetabolomicprofilingofalzheimersdiseaseinplasma AT jonesdeanp highresolutionmetabolomicprofilingofalzheimersdiseaseinplasma AT millergaryw highresolutionmetabolomicprofilingofalzheimersdiseaseinplasma AT huwilliamt highresolutionmetabolomicprofilingofalzheimersdiseaseinplasma |