Cargando…

High order mode structure of intense light fields generated via a laser-driven relativistic plasma aperture

The spatio-temporal and polarisation properties of intense light is important in wide-ranging topics at the forefront of extreme light-matter interactions, including ultrafast laser-driven particle acceleration, attosecond pulse generation, plasma photonics, high-field physics and laboratory astroph...

Descripción completa

Detalles Bibliográficos
Autores principales: Duff, M. J., Wilson, R., King, M., Gonzalez-Izquierdo, B., Higginson, A., Williamson, S. D. R., Davidson, Z. E., Capdessus, R., Booth, N., Hawkes, S., Neely, D., Gray, R. J., McKenna, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952361/
https://www.ncbi.nlm.nih.gov/pubmed/31919383
http://dx.doi.org/10.1038/s41598-019-57119-x
Descripción
Sumario:The spatio-temporal and polarisation properties of intense light is important in wide-ranging topics at the forefront of extreme light-matter interactions, including ultrafast laser-driven particle acceleration, attosecond pulse generation, plasma photonics, high-field physics and laboratory astrophysics. Here, we experimentally demonstrate modifications to the polarisation and temporal properties of intense light measured at the rear of an ultrathin target foil irradiated by a relativistically intense laser pulse. The changes are shown to result from a superposition of coherent radiation, generated by a directly accelerated bipolar electron distribution, and the light transmitted due to the onset of relativistic self-induced transparency. Simulations show that the generated light has a high-order transverse electromagnetic mode structure in both the first and second laser harmonics that can evolve on intra-pulse time-scales. The mode structure and polarisation state vary with the interaction parameters, opening up the possibility of developing this approach to achieve dynamic control of structured light fields at ultrahigh intensities.